The Effect of Fly Ash Composition on The Hydrophobic Absorption, and Strength Properties of Concrete

Asri Vauzia - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Ratnawulan - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


The use of concrete in buildings that indicate direct contact with water such as concrete preparation and roof requires waterproof concrete. The air entering the concrete through the capillary tubes formed during the formation process can be reduced by reducing the diameter of the microcapillary. Fly Ash is an additive that has seeds that are smaller than cement. After the fly ash in the concrete mixture reacts with cement and water, the diameter of the microcapillary formed will be smaller. The purpose of this study is to determine the effects of variations in the composition of flying ash on the hydrophobic, absorption, and concrete strength. Variations in the composition of flying ash are 0%, 5%, 10%, 15%, and 20%. Based on the test, the percentage of absorption in concrete aged 7 reached an optimal value at 5% percentage of flying ash with a value of 0.363%, whereas in concrete aged 14 days optimal value is obtained at the percentage of flying ash 5% with a value of a 0.5%. The biggest contact angle for the variation of 0% flying ash at the age of 7 days is 128.79⁰ and the lowest value for the variation in flying 15% is 100.41⁰. The highest compressive strength value occurs in the percentage of flying ash at 0% is 30,945 in 7 days of concrete age, and the lowest concrete compressive strength value is the percentage of fly ash at 15%, namely 16.05 MPa for concrete age 14 days

Full Text:

PDF

References


PUPR, “Jumlah Kemantapan Jembatan Nasional Tahun 2020,” Data.Pu.Go.Id. p. 1, 2020.

A. Maryoto, “Sinergi Penggunaan Calcium Stearate dan Fly Ash dalam Beton untuk Menahan Tekanan Air,” J. Tek. Sipil dan Perenc., vol. 16, no. 2, pp. 135–140, 2014.

A. Maryoto, “Pengaruh Penggunaan Calcium Stearate Pada Beton Bertulang,” vol. 6, no. 2, 2010.

K. Tjokrodimuljo, “Teknologi beton.” Nafiri, Yogyakarta, 1996.

I. Damayanti and A. Rochman, “Tinjauan Penambahan Microsilica dan Fly Ash Terhadap Kuat Tekan Beton Mutu Tinggi,” J. eco REKAYASA, vol. 2, no. 1, 2006.

P. Klieger, “Effect of Mixing and Curing Temperature on Concrete Strength,” in Journal Proceedings, 1958, vol. 54, no. 6, pp. 1063–1081.

P. Nugraha, “Teknologi Beton; Dari Material, Pembuatan, Ke Beton Kinerja Tinggi,” 2007.

E. H. Nugroho, “Analisis Porositas dan Permeabilitas Beton dengan Bahan Tambah Fly Ash untuk Perkerasan Kaku (Rigid Pavement),” Skripsi, p. 54, 2010.

H. A. Mohamed, “Effect of Fly Ash and Silica Fume on Compressive Strength of Self-Compacting Concrete Under Different Curing Conditions,” Ain Shams Eng. J., vol. 2, no. 2, pp. 79–86, 2011.

I. W. Suarnita, “Kuat Tekan Beton dengan Aditif Fly Ash ex. pltu mpanau tavaeli.”

E. Purnamasari, A. Gazali, and M. B. Januar, “The Effect of Variations of Fly Ash Filling Materials on Porous Concrete Using Local Aggregates from South Borneo,” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 999, no. 1, p. 1, 2002.

I. M. Alit and K. Salain, “Pozzolan Dengan Yang Menggunakan Semen Portland Tipe I,” pp. 97–102, 2011.

K. Erdoğdu and P. Türker, “Effects of Fly Ash Particle Size on Strength of Portland Cement Fly Ash Mortars,” Cem. Concr. Res., vol. 28, no. 9, pp. 1217–1222, 1998.12

A. Maryoto, “Penurunan Nilai Absorbsi dan Abrasi Beton dengan Penambahan Calcium Stearate dan Fly Ash,” Media Tek. Sipil, vol. 9, no. 1, pp. 16–19, 2009.

C.-K. Wang and C. G. Salmon, Reinforced concrete design. 1979.

E. Rommel, Y. Wahyudi, and R. Dharmawan, “Tinjauan Permeabilitas dan Absorbsi Beton Dengan Menggunakan Bahan Fly Ash Sebagai Cementitious,” J. Media Tek. Sipil, vol. 13, no. 2, pp. 141–145, 2016, doi: 10.22219/jmts.v13i2.2559.

B. Bhushan, Y. C. Jung, and K. Koch, “Micro-, nano- And hierarchical Structures for Superhydrophobicity, Self-cleaning and Low Adhesion,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 367, no. 1894, pp. 1631–1672, 2009, doi: 10.1098/rsta.2009.0014.

P. F. G. Banfill, “Structure And rheology of Cement-based Systems,” MRS Online Proc. Libr., vol. 289, 1992.

A. Antono, “Teknik Beton.” Fakultas Teknik Universitas Gadjah Mada, Jogyakarta, 1995.

S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, “A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications,” J. Mater. Chem. A, vol. 5, no. 1, pp. 31–55, 2017.

S. Trinugroho and R. S. Ningrum, “Optimum Compressive Strength of Geopolymer Concrete in Variations Comparison of Ingredients and Mixing Time,” in Journal of Physics: Conference Series, 2021, vol. 1858, no. 1, p. 12054.

M. D. Newlands and K. A. Paine, “Sustainable High Performance Concrete Infrastructure,” Indian Concr. J., vol. 84, no. 10, 2010.

B. Catur Marina and D. Ahmad Pujiyanto, “Pengaruh Fly Ash Terhadap Kuat Tekan dan Porositas Beton Berpori,” J. Saintis, vol. 20, no. 02, pp. 110–118, 2020, doi: 10.25299/saintis.2020.vol20(02).5622.




DOI: http://dx.doi.org/10.24036/12978171074