Design and Construction of Modeling Tool of Linear Motion Experiment Assisted Toy Cars with Remote Control for Video Tracker Analysis

Hanifa Yoanda - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Asrizal - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Yohandri - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
- Yulkifli - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131

Abstract


Physics has an important role in development and technology. Physics is concerned with experiment. From the results of research that has been carried out, it is known that there is no linear motion of  kinematics experiment with speed control and the use of an inclined plane for the sliding plane of the linear motion experiment. The limitation of the instrument in displaying physical measurement quantities is one of the reasons. To overcome this limitation, a modeling tool assisted by a remote control toy car and analyze it using tracker software  is created. The purpose of this study is to determine the performance specifications of the modeling tool for linear motion experiments assisted by a remote control toy car, determine the value of the accuracy and precision of the modeling tool, and also determine the correlation of physical quantities in linear motion experiments. Based on the results of data analysis using tracker software, there are three results can be explained. First, the performance specifications of linear motion experimental modeling tool with the length of the glide plane being 2 m and a width of 30 cm. The use of a dc motor, bluetooth module using an android connected to the HC-05. Second, the accuracy of the measurement of time and speed in the LMCV experiment was 98.4% and 97.2%. The accuracy values for the measurement of acceleration and velocity in the LMCA experiment were 95.53% and 95.5%. Third, in LMCV the correlation between position and time is in the form of a linear line, the correlation between velocity and time is in the form of a straight line with a constant value

Full Text:

PDF

References


Young, Hugh. D, College Physics, 9th ed., Addison-Wesley, 2012.

Zitzewitz, Paul., Physics: Principleand Prolems, The McGraw-Hill Companies, Inc. United States of America, 2005.

A. Asrizal, Y. Yohandri, and Z. Kamus, “Studi Hasil Pelatihan Analisis Video dan Tool Pemodelan Tracker pada Guru MGMP Fisika Kabupaten Agam,” J. Eksata Pendidik., vol. 2, no. 1, p. 41, 2018, doi: 10.24036/jep/vol2-iss1/84.

Firdaus, T., Setiawan., and Hamidah, I, “The Kinematic Learning Model Using Video and Interface Analysis,” Intenational Conference on mathematics and Science Education, IOP. Series: Jounal of Physic, Conf. Series 895, 012108, 2017.

I. A. Rizki, N. F. Citra, and H. V. Saphira, “Eksperimen Dan respon Mahasiswa Terhadap Praktikum Fisika Non-Laboratorium Menggunakan Aplikasi Tracker Video Analysis Untuk Percobaan Kinematika Gerak,” Journal of Teaching Learning Physics, vol 6, no.2, pp. 77-89, 2021.

Bagus, Lorenz. Kamus Filsafat, Jakarta: Gramedia Pustaka Utama, 2005.

M. Santoso, Fisika SMA: Gerak Lurus,Pusat Perbukuan Pendidikan Nasional: Departemen Pendidikan Nasional, 2004.

T. Indrasutanto, T. Yunitasari, “Pendayagunaan Linear Air Track Untuk Percobaan Gerak Lurus Beraturan Dan Gerak Lurus Berubah Beraturan,” ISSN: 0852-078S, Edisi no. 26, 2009.

A. K. Febriana, A. Q. Nada, “Identifikasi Miskonsepsi Siswa Pada Materi GLB dan GLBB,” J. Kependidikan Betara., vol 2, no. 1, pp 43-50, 2021.

S. Prihatini, W. Handayani, and R. D. Agustina, “Identifikasi Faktor Perpindahan Terhadap Waktu Yang Berpengaruh Pada Kinematika Gerak Lurus Beraturan (GLB) Dan Gerak Lurus Berubah Beraturan (GLBB) ,” J. Teach. Learn. Phys., vol. 2., no. 2, pp. 13-20, 2017, doi: 10.15575/jotalp.v2i2.6580.

A. Asrizal, Y. Yulkifli, and M. Sovia, “Penentuan Karakteristik Sistem Pengontrolan Kelajuan Motor DC dengan Sensor Optocoupler Berbasis Mikrokontroler AT89S52, JOKI., vol. 4, no.1, p. 25, 2012.

(2021) The Arduino website. [Online]. Available: https://www.arduino.cc

Latifa, “Perancangan Robot Arm Gripepr Berbasis Arduino Uno Menggunakan Antar Muka LabView ,” vol. 3., no. 2, 2018.

Kristyabudi, H. Nanda, “Sistem Kendali Remote Control Mini-Blimp Menggunakan Android Smartphone Dengan Komunikasi Bluetooth Berbasis Mikrokontroler,” 2016. [Online]. Available: http://repository.usd.ac.id/9127/.

J. E. Istiyanto, “Karakteristik Metodologi Penelitian Bidang Ilmu Komputer (IK) Berlandaskan Pendekatan Posistisvik,” vol. 17., no. 2, pp. 115-120, 2010.

K. Ogata, Teknik Kontrol Otomatik, Edisi 2 Jilid 1, Erlangga, Jakarta, 1997.

E. Triaga, Y. Yulkifli, and Y. Yohandri, “Pembuatan Air Track Untuk Eksperimen Kinematika dan Dinamika Berbasis Mikrokontroler Atmega328,” J. Pillar of Physics., vol. 10, pp. 14-22, 2017.

E. Yudaningtyas, Belajar Sistem Kontrol: Soal dan Pembahasan, UB Press., Malang, 2017.

W. D. Puspitasari, F. Febrinita, “Persepsi Mahasiswa Tentang Pemahaman Konsep Kinematika Gerak Ditinjau dari Kemampuan Berpikir Kritis,” J. Unnes Physics Education., vol. 9., no. 2, 2020.

M. Abdullah, Fisika Dasar 1, ITB, Bandung, 2016.

D. Brown and A. J. Cox, “Innovative Uses of Video Analysis,” Phys. Teach., vol. 47, no.3, pp. 145-150, 2009, doi: 10.1119/1.3081296.

K. N. Aulia, “Pengaruh Model Pembelajaran Problem Solving Terhadap Kemampuan Kognitif Dan Hasil Belajar Kelas VIII Materi GLB dan GLBB Di SMP Islam Al-Fattahiyah Boyolangu Tulungagung,” 2022,. [Online]. Available: http://repo.uinsatu.ac.id/eprint/24783.

V. S. Deesera, Ilhamsyah, and D. Triyanto, “Rancang Bangun Alat Ukur Gerak Lurus Beraturan (GLBB) Pda Bidang Miring Berbasis Arduino,” vol. 5., no. 2, pp. 47-56, 2017.




DOI: http://dx.doi.org/10.24036/12829171074