Design and Construction of Modeling Tool of Linear Motion Experiment Assisted Toy Cars With Speed Control for Video Tracker Analysis

Firma Lestari - Department of Physics, Universitas Negeri Padang, West Sumatra
- Asrizal - Department of Physics, Universitas Negeri Padang, West Sumatra

Abstract


Experimental activities aim to improve understanding and thinking skills in understanding physics concepts. But in reality, the experiment has not been carried out properly, due to the use of manual instruments so it affects the results of the linear motion experiment obtained. As a solution to the problem, namely by making a linear motion experimental modeling tool assisted by a toy car with speed control for video tracker analysis. The purpose of this study is to determine the performance specifications of the linear motion experimental modeling tool, the accuracy and precision of the time measurement on the linear motion experimental modeling tool, to determine the effect of the relationship between physical quantities on the linear motion. The type of research conducted in engineering research. The data analysis technique used is descriptive data analysis and error analysis. From the data analysis, it can be stated three results of this research. First, the performance specifications of the linear motion experimental modeling tool consist of toy cars measuring 13x7 cm, controlling the dc motor using a step-down xl-6009 dc-dc, measuring angles using mpu6050, trajectory measuring 2.0x0.10 m, processing experimental results using tracking software. Second, the average accuracy of time measurement in LMCV is 98.16% with an average error of 1.93%. The average accuracy of time measurement in LMCV is 98.38% with an average error of 1.53%. Third, the velocity value obtained is proportional to the applied voltage value, while the acceleration value is proportional to the increase in the angle used.

Full Text:

PDF

References


L. Supriyatna & Roza, “Analisis Keakuratan Sensor Inframerah dan Stopwatch pada Praktik GLB dan GLBB.” 2021.

A. Solihun, “Pengembangan Alat Peraga GLB dan GLBB Berbasis Sensor LDR (Light Dependent Resistor),” J. Radiasi, vol. 6, no. 1, hal. 101–102, 2015.

M. Fitri, Hufri, dan Yohandri, “Pembuatan Sistem Penentuan Koefisien Gesek Statis Benda Pada Bidang Miring Secara Digital Berbasis Mikrokontroler,” Pillar Phys., vol. 2, no. 2, hal. 9–16, 2014.

J. B. Gregorio, “Using Video Analysis , Microcomputer-Based Laboratories ( MBL ’ s ) and Educational Simulations as Pedagogical Tools in Revolutionizing Inquiry Science Teaching and Learning,” K‐12 STEM Educ., vol. 1, no. 1, hal. 43–64, 2015.

A. Asrizal, Y. Yohandri, dan Z. Kamus, “Studi Hasil Pelatihan Analisis Video dan Tool Pemodelan Tracker pada Guru MGMP Fisika Kabupaten Agam,” J. Eksakta Pendidik., vol. 2, no. 1, hal. 41, 2018, doi: 10.24036/jep/vol2-iss1/84.

D. Deesera, S.Vionanda, “Rancang Bangun Alat Ukur Gerak Lurus Berubah Beraturan (GLBB) Pada Bidang Miring Berbasis Arduino,” J. Coding Sist. Komput. Untan, vol. 05, no. 2, hal. 47–56, 2017.

Serway, Raymond A., & Jewett, John W Jr. (2010). physics for scientists and engineers with modern physics. Belmont, CA: Thomson-Brooks/Cole

Bollen, L., De Cock, M., Zuza, K., Guisasola, J., & van Kampen, P. (2016). Generalizing a categorization of students’ interpretations of linear kinematics graphs. Physical Review Physics Education Research, 12(1),

Muhammad Ishaq, Fisika Dasar. Yogyakarta: Graha Ilmu, 2007.

Kamajaya, Inspirasi Sains Fisika. Jakarta: Ganeca Exact, 2007.

D. Kurniawan, “Perancangan Kit Percobaan Gerak Lurus Berubah Beraturan Pada Bidang Miring,” J. Inov. Fis. Indones., vol. 04, hal. 84–88, 2015.

K. Khotijah, A. Arsini, dan S. R. Anggita, “Pengembangan Praktikum Fisika Materi Hukum Kekekalan Momentum Menggunakan Aplikasi Video Tracker,” Phys. Educ. Res. J., vol. 1, no. 1, hal. 37, 2019, doi: 10.21580/perj.2019.1.1.3961.

S. Susilawati, M. Satriawan, R. Rizal, dan S. Sutarno, “Fluid Experiment Design Using Video Tracker and Ultrasonic Sensor Devices to Improve Understanding of Viscosity Concept,” J. Phys. Conf. Ser., vol. 1521, no. 2, 2020, doi: 10.1088/1742-6596/1521/2/022039.

C. Putri dan A. Asrizal, “Pengembangan Tool Pemodelan Gerak Melingkar Beraturan dengan Pengontrolan Laju Motor DC Berbantukan Analisis Video Tracker,” Pillar Phys., vol. 12, hal. 61–69, 2019.

S. Pakpahan, Automatic Control. Jakarta: Erlangga, 1988.

B. Bin Dahlan, “Sistem Kontrol Penerangan Menggunakan Arduino Uno Pada Universitas Ichsan Gorontalo,” Ilk. J. Ilm., vol. 9, no. 3, hal. 282–289, 2017, doi: 10.33096/ilkom.v9i3.158.282-289.

Sadim , Mohd, Dr. R. K.Sharma. 2018. Monitoring of Temperature and Humidity of Remote Place using Cloud Computing. International Journal of Innovative Research in Computer and Communication Engineering. Vol. 6, Issue 4.

Muhammadi, Penelitian Rekayasa. Bandung: Informatika, 2011.

D. Brown dan A. J. Cox, “Innovative Uses of Video Analysis,” Phys. Teach., vol. 47, no. 3, hal. 145–150, 2009, doi: 10.1119/1.3081296.

S. Prihatini, W. Handayani, dan R. D. Agustina, “Identifikasi Faktor Perpindahan Terhadap Waktu Yang Berpengaruh Pada Kinemetika Gerak Lurus Beraturan (Glb) Dan Gerak Lurus Berubah Beraturan (Glbb),” J. Teach. Learn. Phys., vol. 2, no. 2, hal. 13–20, 2017, doi: 10.15575/jotalp.v2i2.6580.




DOI: http://dx.doi.org/10.24036/12649171074