Microwave Absorption Properties of Graphene Oxide Derived from Coconut Shell Waste by Modified Hummer's Method

Nadia Ardianti - Department of Physics, Universitas Negeri Padang, Jl. Prof. Dr. Hamka Air Tawar Padang 25131
Yenni Darvina - Nanoscience and Nanotechnology Research Group, Universitas Negeri Padang, Padang 25131
Fadhila Jhora - Nanoscience and Nanotechnology Research Group, Universitas Negeri Padang, Padang 25131
- Ramli - Nanoscience and Nanotechnology Research Group, Universitas Negeri Padang, Padang 25131

Abstract


Coconut shells are organic waste, so they can be used as an alternative for carbon source. In this study, the synthesis of graphene oxide (GO) from coconut shell waste will be carried out. The results of the synthesis of GO will then be tested for microwave absorbing properties because it can be applied in various fields, such as information technology, medical equipment, industry, polymer synthesis, and organic synthesis. GO synthesis was carried out using the modified Hummers method. There are several stages in this study, namely the stage of preparing old coconut shells, the stage of carbon activation, the stage of GO synthesis, and the stage of sonication and neutralization of GO. The coconut shell was treated with variations in the sintering temperature to see its effect on the microwave absorbing properties. The sintering temperatures used in this study were 250°C, 300°C, 350°C, 400°C, and 450°C. GO characterization was carried out using X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Vector Network Analyzer (VNA) to determine the phase, functional groups, and microwave absorption properties of GO. In the results of GO characterization using VNA, it was found that there was an effect of temperature variations. GO can be synthesized from old coconut shell waste using the modified Hummers method and has a GO phase result. The best microwave absorbing properties are at a sintering temperature of 400°C with a reflection loss value of -24.40 dB. Absorbing coefficient 93.97% at 10.40 GHz

Full Text:

PDF

References


S. S. Dewi and L. Xia, “Analysis of Trade Specialization and Competitiveness of Indonesian Coconut Oil in the International Market (2010-2020),” Open J. Bus. Manag., vol. 10, no. 01, pp. 245–262, 2022, doi: 10.4236/ojbm.2022.101015.

A. Wang and H. Goto, “Carbon Material with Fibonacci Parastichy Structure,” Soft, vol. 05, no. 01, pp. 1–8, 2017, doi: 10.4236/soft.2017.51001.

A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Mater. Sci., vol. 1, no. 1, pp. 31–47, 2019, doi: 10.1016/j.nanoms.2019.02.004.

B. H. Abrha and Y. Chen, “Analysis of Physico-Chemical Characteristics of Effluents from Beverage Industry in Ethiopia,” J. Geosci. Environ. Prot., vol. 05, no. 06, pp. 172–182, 2017, doi: 10.4236/gep.2017.56016.

P. Singh, J. Bahadur, and K. Pal, “One-Step One Chemical Synthesis Process of Graphene from Rice Husk for Energy Storage Applications,” Graphene, vol. 06, no. 03, pp. 61–71, 2017, doi: 10.4236/graphene.2017.63005.

J. Wang, E. C. Salihi, and L. Šiller, “Green reduction of graphene oxide using alanine,” Mater. Sci. Eng. C, vol. 72, pp. 1–6, 2017, doi: 10.1016/j.msec.2016.11.017.

S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*,” Graphene, vol. 06, no. 01, pp. 1–18, 2017, doi: 10.4236/graphene.2017.61001.

O. H. Al Hattamleh, H. H. Al-deeky, M. N. Akhtar, and E. T. Al, “Ijg_2013091614294414,” vol. 2013, no. September, pp. 1055–1060, 2013.

M. S. Eluyemi et al., “Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method,” Graphene, vol. 05, no. 03, pp. 143–154, 2016, doi: 10.4236/graphene.2016.53012.

R. Ramli, R. Jonuarti, and A. Hartono, “Analisis Struktur Nano Dari Lapisan Tipis Cobalt Ferrite Yang Dipreparasi Dengan Metode Sputtering,” EKSAKTA Berk. Ilm. Bid. MIPA, vol. 18, no. 01, pp. 46–53, 2017, doi: 10.24036/eksakta/vol18-iss01/16.

M. F. Elmahaishi, R. S. Azis, I Ismail, and F.D. Muhammad, "A review on electromagnetic microwave absorption properties: their materials and performance" Journal of Materials Research and Technology Vol 20, September–October 2022, pp. 2188-2220

M. Fan, D. Dai, and B. Huang, “Fourier Transform Infrared Spectroscopy for Natural Fibres,” Fourier Transform - Mater. Anal., 2012, doi: 10.5772/35482.

M. Fadhilah and R. Ramli, “Pengaruh suhu sintering pada penyerapan gelombang mikro nanokomposit nife 2 o 4 / pvdf untuk material penyerap radar Mahasiswa Fisika , FMIPA Universitas Negeri Padang Staf Pengajar Jurusan Fisika , FMIPA Universitas Negeri Padang,” vol. 12, pp. 98–103, 2019.

M. I. Ramadhan, W. Widanarto, and S. Sunardi, “Pengaruh Temperatur Sintering Terhadap Struktur dan Sifat Magnetik Ni2+- Barium Ferit sebagai Penyerap Gelombang Mikro,” J. Teras Fis., vol. 1, no. 1, p. 23, 2018, doi: 10.20884/1.jtf.2018.1.1.567.

N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, “Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence,” Procedia Eng., vol. 184, pp. 469–477, 2017, doi: 10.1016/j.proeng.2017.04.118.

B. Sekunder, S. Qomariyah, W. Widanarto, and W. T. Cahyanto, “Struktur dan Konduktivitas Ionik Kaca LiMNPO 4 sebagai Katoda,” vol. 1, pp. 1–8, 2018.

Y. Rafitasari, H. Suhendar, N. Imani, F. Luciana, H. Radean, and I. Santoso, “Sintesis Graphene Oxide Dan Reduced Graphene Oxide,” vol. V, pp. SNF2016-MPS-95-SNF2016-MPS-98, 2016, doi: 10.21009/0305020218.

G. Supriyanto et al., “Graphene oxide from Indonesian biomass: Synthesis and characterization,” BioResources, vol. 13, no. 3, pp. 4832–4840, 2018, doi: 10.15376/biores.13.3.4832-4840.

F. F. Polii, “Pengaruh suhu dan lama aktivasi terhadap mutu arang aktif dari kayu kelapa,” J. Ind. Has. Perkeb., vol. 12, no. 2, pp. 21–28, 2017.

N. P. Putri, D. H. Kusumawati, L. Agustina, and Munasir, “Effect of calcination temperature on characteristics of reduced Graphene Oxide (rGO) made from old coconut shell,” J. Phys. Conf. Ser., vol. 1171, no. 1, 2019, doi: 10.1088/1742-6596/1171/1/012042.

A. Sahila Grace and G. S. P. Littis Malar, “Synthesis and Characterization of Graphene Oxide from Coconut Husk Ash,” Orient. J. Chem., vol. 36, no. 02, pp. 348–352, 2020, doi: 10.13005/ojc/360220.




DOI: http://dx.doi.org/10.24036/12601171074