Structure Analysis Of Graphene Micro Oxide From Old Coconut Shell Waste

Rika Nanda - Department of Physics, Universitas Negeri Padang, West Sumatra
- Ramli - Department of Physics, Universitas Negeri Padang, West Sumatra

Abstract


Synthesis of graphene oxide from old coconut shell waste material. It has many applications, one of which is used as a microwave absorber. Old coconut shells are used as waste because the ingredients are easy to get. This study aims to analyze the microstructure of graphene oxide from old coconut shell waste. In the carbonization process using a furnace with temperature variations from 250˚C to 450˚C, the furnace time is 120 minutes. Making activated charcoal from old coconut shells using the modified hummers method with oxidizing agents KmnO2, H2SO4, and NaNO3. Characterization of graphene oxide from old coconut shell waste using FTIR, XRD and SEM. The test results using FTIR on GO samples show the formation of GO material where the sample contains functional groups containing bonds between carbon (C), Hydrogen (H) and Oxygen (O), the highest crystal size on XRD is 43.20800529 nm, and particle size the best SEM was obtained at GO 250˚C with a particle size of 65.701671 nm where the larger the particle size, the larger the surface pores of the sample, so that the better microwave absorbent was produced.

Full Text:

PDF

References


D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, vol. 39. Chemical Society Review, pp. 228–240, 2009, doi: 10.1039/b917103g.

P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sensors Actuators, B Chem., vol. 200, pp. 9–18, 2014, doi: 10.1016/j.snb.2014.04.035.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, “Hydrazine-reduction of graphite- and graphene oxide,” Carbon N. Y., vol. 49, pp. 3019–3023, 2011, doi: 10.1016/j.carbon.2011.02.071.

S. C. Ray, Applications of Graphene and Graphene-Oxide based Nanomaterials. Oxford: Elsevier Inc, 2015.

V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, and A. Buasri, “Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods,” Adv. Mater. Sci. Eng., vol. 2013, pp. 1–5, 2013, doi: http://dx.doi.org/10.1155/2013/924303.

A. Y. Nugraheni, M. Nashrullah, F. A. Prasetya, F. Astuti, and Darminto, “Study on Phase, Molecular Bonding, and Bandgap of Reduced Graphene Oxide Prepared by Heating Coconut Shell,” Mater. Sci. Forum, vol. 827, pp. 285–289, 2015, doi: 10.4028/www.scientific.net/MSF.827.285.

O. Paris, G. A. Zickler, and C. ZollFrank, “Decomposition and Carbonisation of Wood Biopolymers—a Microstructural Study of Softwood Pyrolysis,” Carbon N. Y., vol. 43, pp. 53–66, 2005, doi: DOI:10.1016/j.carbon.2004.08.034.

J. W. Lalena, D. A. Cleary, E. E. Carpenter, and N. F. Dean, Inorganic Materials Synthesis and Fabrication. USA: John Wiley & Sons, Inc, 2008.

G. L. Yu et al., “Interaction phenomena in graphene seen through quantum capacitance,” PANS9, vol. 110, no. 9, pp. 1–5, 2013, doi: 10.1073/pnas.1300599110.

S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon N. Y., vol. 50, no. 9, pp. 3210–3228, 2012, doi: 10.1016/j.carbon.2011.11.010.

The Royal Swedish Academy of Science, “Graphene.” The Royal Swedish Academy of Sciences, Sweden, 2010.

E. Sahara, N. K. Dahliani, and I. B. P. Manuaba, “Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes Erecta) dengan Aktivator NaOH,” J. Kim., vol. 11, no. 2, pp. 174–180, 2017.

M. Ikhsan and R. Ramli, “Measurements and analysis of crystal structures of activated carbon of empty fruit bunch from oil palm biomass waste,” in Journal of Physics: Conference Series, 2020, vol. 1528, no. 1, pp. 1–4, doi: 10.1088/1742-6596/1528/1/012031.

J. Wang, E. Caliskan, and Š. Lidija, “Green Reduction of Graphene Oxide using Alanine,” Mater. Sci. Eng., vol. 72, pp. 1–6, 2017, doi: 10.1016/j.msec.2016.11.017.

J. Chen, B. Yao, C. Li, and G. Shi, “An improved Hummers method for eco-friendly synthesis of graphene oxide,” Carbon N. Y., vol. 64, pp. 225–229, 2013, doi: 10.1016/j.carbon.2013.07.055.

P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao, J. Balakrishnan, and A. D. Thakur, “A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-30613-4.

M. Hapsari, A. H. Cahyana, S. H. Oktavia, and A. R. Liandi, “Synthesis of spirooxindole-pyrrolizidine compounds using fe3o4-go catalyst and their bioactivity assays,” Rasayan J. Chem., vol. 13, no. 4, pp. 2317–2324, 2020, doi: 10.31788/RJC.2020.1345583.

M. B. P. Honorisal, N. Huda, T. Partuti, and A. Sholehah, “Sintesis dan Karakterisasi Grafena Oksida dari Tempurung Kelapa dengan Metode Sonikasi dan Hidrotermal,” Tek. J. Sains dan Teknol., vol. 16, no. 1, pp. 1–11, 2020, doi: 10.36055/tjst.v16i1.7519.

N. Syakir, R. Nurlina, S. Anam, A. Aprilia, S. Hidayat, and F. -, “Kajian Pembuatan Oksida Grafit untuk Produksi Oksida Grafena dalam Jumlah Besar (Halaman 26 s.d. 29),” J. Fis. Indones., vol. 19, no. 55, pp. 26–29, 2015, doi: 10.22146/jfi.24354.

J. Guerrero-Contreras and F. Caballero-Briones, “Graphene Oxide Powders with Different Oxidation Degree, Prepared by Synthesis Variations of the Hummers Method,” Mater. Chem. Phys., vol. 30, pp. 1–12, 2015, doi: 10.1016/j.matchemphys.2015.01.005.

V. Sharma, A. Garg, and S. C. Sood, “Graphene Synthesis via Exfoliation of Graphite by Ultrasonication Graphene Synthesis via Exfoliation of Graphite by Ultrasonication,” Int. J. Eng. Trends Technol., vol. 26, no. 1, pp. 38–42, 2015, doi: 10.14445/22315381/IJETT-V26P208.

M. A. Pradana, H. Ardhyananta, and M. Farid, “Pemisahan Selulosa dari Lignin Serat Tandan Kosong Kelapa Sawit dengan Proses Alkalisasi untuk Penguat Bahan Komposit Penyerap Suara,” J. Tek. ITS, vol. 6, no. 2, pp. 413–416, 2017.

A. Fathia, Sintesis dan Karakterisasi Graphene Oxide Terkombinasi Nanopartikel Perak dalam Fase Cair, Skripsi. Universitas Negeri Yogyakarta, 2018.

P. Ayria, A. R. T. Nugraha, E. H. Hasdeo, T. R. Czank, S. Tanaka, and R. Saito, “Photon Energy Dependence of Angle-Resolved Photoemission Spectroscopy in Graphene,” Phys. Rev., vol. 92, pp. 1–7, 2015, doi: 10.1103/PhysRevB.92.195148.

R. F. Suwandana and D. Susanti, “Analisis Pengaruh Massa Reduktor Zinc terhadap Sifat Kapasitif Superkapasitor Material Graphene,” J. Tek. ITS, vol. 4, no. 1, pp. 95–100, 2015.




DOI: http://dx.doi.org/10.24036/12600171074