Analisis Probabilitas Kelongsoran Menggunakan Metode *Monte Carlo* Pada *Highwall* Pit SB-II BK-14 PT. Trubaindo Coal Mining, *Site* Melak, Kabupaten Kutai Barat, Kalimantan Timur.

Panji Kurnia Wiradani¹*, Bambang Heriyadi¹**

¹Jurusan Teknik Pertambangan Fakultas Teknik Universitas Negeri Padang

*panjikurniawiradani@gmail.com

** bambangh@ft.unp.ac.id

Abstract. The wider and deeper the mine open in excavation, the greater the risks will arise or further improve uncertainty, on the factors that affect the stability of that open mining slope. This relates to the spatial variabelity in rocks laboratory testing, the handling of land cover, ground water level, and the weather. To predict the possibility of landslides, landslide probability analysis is applied by using the Monte Carlo method. The study was conducted on pit Highwall SB-II BK-14 especifically in cross section of A-A', B-B ',C-C' D-D '. sequens mining Septermber 2017. The data obtained is the classification of rocks masses with RMR and GSI criteria, the slopes geometry, the ground water level, the physical and mechanical properties of rocks, and seismic hazard. Based on data processing, cross-section A-A has the landslide probability of 10.5% with FS (deterministic) 1.25 and Reliability index 1.12 (<3 means unreliable design) for cross-section B-B ', C-C' and D-D ' has no value of landslide probability, but it does not mean there is no possibility, as the mining activities progress the landslide probability will increase.

Keywords: Geotechnical, Probability analysis, Geological strength Indexs, Rock Mass Rating, Monte Carlo method

1. Pendahuluan

Kestabilan lereng tambang terbuka pada industri pertambangan merupakan salah satu isu penting, hal ini berkaitan dengan peningkatan produksi perusahaan tambang di Indonesia, akibatnya perusahaan tambang tersebut melakukan pelebaran dan pendalaman penggalian^[1]. Semakin lebar dan dalam tambang terbuka tersebut dilakukan penggalian, maka tentunya akan semakin besar resiko yang akan muncul atau semakin meningkatkan ketidakpastian pada faktorfaktor yang mempengaruhi kestabilan lereng tambang terbuka tersebut^[2].

Faktor-faktor yang mempengaruhi kelongsoran lereng mencakup sifat fisik dan mekanik batuan, kondisi air tanah, karakterisasi massa batuan, struktur yang ada pada batuan serta geometri lereng. Banyaknya faktor yang mempengaruhi dalam analisis kestabilan suatu lereng, serta terdapatnya sejumlah ketidakpastian terhadap faktor tersebut, membuat indikator kestabilan lereng yang digunakan saat ini faktor keamanan (FK) tidak mampu memberikan desain teoritis yang aman dalam desain praktek suatu lereng Hal ini terlihat dari beberapa lereng yang diteliti oleh Hoek & Bray, dimana masih terjadi longsor pada lereng yang memiliki kriteria faktor keamanan yang dapat diterima serta didapatkan beberapa lereng yang masih stabil pada kriteria faktor keamanan yang tidak dapat diterima ^[1]. Atau dengan kata lain, ada lereng aman longsor dan ada lereng tidak aman tidak longsor.

Hal ini dikarenakan faktor keamanan hanya menganggap nilai rata-rata parameter masukan sudah mewakili karakteristik masing-masing parameter masukan tersebut. Padahal secara alamiah seluruh parameter tersebut memiliki variasi nilai yang memiliki peluang yang sama untuk mewakili karakteristik masingmasing parameter. Oleh sebab itu diperlukan suatu cara yang dapat menjadi solusi kondisi tersebut^[2]. Suatu alternatif selain pendekatan FK untuk desain lereng adalah metode probabilistik yang didasarkan pada perhitungan probabilitas kelongsoran (PK) lereng. Pada metode ini, nilai faktor keamanan digambarkan sebagai variabel acak yang mempunyai fungsi distribusi dengan parameter yang diperlakukan seperti nilai rata-rata dan standar deviasi. Dengan mengkombinasikan distribusi ini dalam model deterministik yang digunakan dalam menghitung nilai FK, maka PK lereng dapat diestimasi.

Hal menarik dari metode probabilistik adalah representasi yang eksplisit dari ketidakpastian dalam kajian stabilitas lereng. Nilai faktor keamanan desain lereng dapat dioptimasi dengan nilai probabilitas kelongsoran, sehingga dapat memberikan tingkat keyakinan terhadap disain lereng tersebut^[2]. Pendekatan analisis probabilistik dan resiko kelongsoran merupakan pendekatan yang komperhensif dalam menentukan kestabilan lereng tambang terbuka.

PT. Trubaindo Coal Mining melakukan aktivitas penambangan dengan metode tambang terbuka. seiring berjalannya aktifitas penambangan yang sesuai dengan perencanaan dalam analisis faktor kemananan pit SB-II-BK-14 sebesar 2.367, dengan hasil ini menunjukan FK>1.25 artinya lereng dengan kondis "AMAN" terlihat pada gambar 1 dibawah ini.

Gambar 1. Hasil analisis FK pada Pit SB-II BK-14 dengan nilai input uji laboratorium kondisi pit sebelum di tambang.

Akan tetapi ini tidak sesuai dengan keadaan *plan* dan keadaan aktual, dimana dalam keadaan aktual lereng berada dalam kondisi longsor sehinga diperlukannya kajian analisis probabilitas kelongsoran untuk mendukung nilai dari faktor keamanan (FK), dengan kondisi batuan yang ada pada Pit SB-II BK-14. PT. Trubaindo Coal Mining didominasi oleh batuan sedimen dimana karakteristik batuan turut dipengaruhi oleh cuaca dan sehingga batuan yang awalnya cukup keras dapat menjadi batuan lunak pada saat tersingkap atau pada saat dimulainya proses penambangan^[3].

Hal ini mendukung asumsi dimana ketidakpastian dari parameter utama dalam analisis kestabilan lereng. Sebagaimana keadaan aktual dapat dilihat pada Gambar 2 berikut ini :

Gambar 2. Keadaan Aktual pada *Highwall* Pit SB-II BK-14 PT. Trubaindo Coal Mining.

2. Lokasi Penelitian

Pengambilan data dan penelitan dilaksanakan pada *Highwall* pit SB-II BK-14 kususnya pada penampang A-A', B-B', C-C', D-D'. *sequens* penambangan Septermber 2017 PT. Trubaindo Coal Mining, *site* melak, Kabupaten Kutai Barat, Kalimantan Timur. Peta lokasi penelitian dapat dilihat pada Gambar 3.

Gambar 3. Peta Kesampaian Daerah PT. Trubaindo Coal Mining.

3. Metode Penelitian

Penelitian ini dilakukan pada bulan Agustus s/d desember 2017, disequens penambangan bulan September. Lokasi penelitian di *Highwall* Pit SB-2 BK-14 PT.Trubaindo Coal Mining, site Melak, Kutai Barat, Provinsi Kalimantan timur.

3.1 Jenis Penelitian

Penelitian ini merupakan jenis penelitian terapan (*applied research*) yaitu suatu kegiatan yang sistematis dan logis dalam rangka menemukan sesuatu yang baru atau aplikasi baru dari penelitian-penelitian yang telah pernah dilakukan selama ini. Berbeda dengan penelitian murni, penelitian terapan lebih menekankan pada penerapan ilmu, aplikasi ilmu, ataupun penggunaan ilmu untuk dan dalam masyarakat, ataupun untuk keperluan tertentu^[4].

3.2 Tahap Pengumpulan Data

Pengumpulan data dimulai dengan pemetaan geoteknik, pembutan *scanline* pada *highwall* pit SB-2 BK-14 serta

pembobotan dengan RMR dan GSI, dan pemngujian sampel dilaboratorium UNP.

3.2.1 Observasi Lapangan

Observasi lapangan meliputi kegiatan pemetaan geoteknik dengan klasifikasi RMR dan GSI, pengukuran MAT Dari observasi lapangan diperoleh data primer berupa kondisi perlapisan tanah dan batuan serta kedalaman MAT.

- 1. Pengumpulan data primer dimulai dengan pemetaan geoteknik pada pit SB-II BK-14 khusus nya pada *highwall* dengan membuat lintasan *scanline* sepanjang (50-200m), dengan jarak masing-masing titik sampling 10 m secara horizontal dan 5 m secara vertikal.
- 2. Pengukuran muka air tanah dilakukan dengan bantuan alat water level meter dengan titik pantau muka air tanah (MAT), pengukuran terletak pada *lowwall, sidewall* serta *higwall* Pit SB-II BK-14.

3.2.2 Pengujian Laboratorium

Pengujian yang dilakukan meliputi uji sifat fisik dan kuat tekan yang digunakan untuk karakterisasi massa batuan dan sebagai data masukan berupa *properties materials* dalam rancangan lereng.

Pengujian dilakukan di Laboratorium Mekanika Batuan Jurusan Teknik Pertambangan "UNP" Universitas Negeri Padang, Padang. sampel batuan didasarkan atas standar ISRM (*International Society for Rock Mechanic*). Untuk panjang dan banyak sampel batuan diperlihatkan oleh Table 1.

Tabel 1. Panjang dar	Banyak Sampel Batuan Minimum
untuk Pengu	jian Laboratorium

No.	Jenis Pengujian	Panjang Sampel (cm)	Banyak Sampel
1.	Sifat fisik	2	18 buah
2.	Kuat tekan	6	18 buah

3.3 Tahap Pengolahan Data

3.3.1 .Pembuatan material model

Material model perlapisan dibuat berdasarkan data pengeboran, ditujukan untuk mengambarkan kondisi dan kemenerusan perlapisan tanah dan batuan di bawah permukaan.

Model perlapisan dibuat dalam dua dimensi mengacu pada cross section dengan mengkorelasikan litologi dari dua lubang bor yang berdekatan. Dalam pembuatan model perlapisan, digunakan asumsi bahwa kemiringan lapisan untuk setiap jenis material sama dengan rata-rata kemiringan lapisan batubara

3.3.2 Pembobotan pemetaan lapangan dan uji laboratorium dan pengolahan menggunakan RocLab

Setelah data didapat dari lapangan baik dari pemetaan geoteknik dengan pembobotan RMR dan GSI, serta pengujian sample batuan di laboratorium untuk pengujian sifat fisisk dan mekanik dari batuan dengan tujuan untuk mengetasui nilai UCS dan *unit weight*, kohesi dan sudut gesek dalam. Kusus untuk mengetahui nilai kohesi (c) dan sudut gesek dalam (ϕ) analisis dibantu dengan mengunakan *software RocLab* dari *Rocscience*.

Analisis data dengan bantuan *software Roclab Rocscience* dengan data input adalah dari nilai pembobotan dari titik pengamatan pada *highwall* pit SB-II BK-14 dengan kriteria pembobotan menggunakan klasifikasi *Rock Mass Ratting* (RMR) input nilai UCS, dan *Geological Strenghs Index* (GSI) input pembobotan batuan secara sedimentary, karana lokasi penelitian ini batuan di dominasi dengan batuan sedimen. Setelah melakukan pemetaan geotecnik hasil akan di analisis dengan bantuan *software* yang dikembangkan Hoek and Brown dengan mengunakan *Roclab 1.0* terlihat pada Gambar 4 dibawah ini.

3.3.3 Analisis statistik deskriptif data hasil uji laboratorium

Analisis statistik deskriptif dilakukan terhadap parameter hasil uji yang penting dalam analisis kestabilan lereng, seperti nilai bobot isi, kohesi, sudut geser dalam, dan kuat tekan. Analisis statistik deskriptif ditujukan untuk mengetahui ukuran pemusatan data (*central tendency*), ukuran penyebaran data (dispersi), dan distribusi data. *Central tendency* diukur berdasarkan nilai *mean* dan *median*, dispersi diukur berdasarkan nilai standar deviasi^[5].

4. Analisis Data

4.1 Analisis kestabilan lereng penambangan dengan menggunakan probabilitas kelongsoran

Analisis kestabilan lereng ditujukan untuk mendapatkan nilai FK dan PK. serta geometri lereng penambangan yang optimum, baik untuk *single slope* maupun *overall slope*. Lereng yang dianalisis dengan nilai input data yang didapat dilapangan akan menghasilkan suatu nilai dimana hasil tersebut dapat di bandingkan dengan memenuhi nilai kemamputerimaan atau ambang batas tertentu, yang pada penelitian ini didasarkan atas rekomendasi SRK Consulting dan Knight Pièsold Consulting ^[6], ditunjukkan oleh Tabel 2 di bawah ini.

Jenis Lereng	Dampak Kelongsoran	FK _{Min} (Statik)	FK _{min} (Dinamik)	PK _{Maks} P[FK<1]
Bench	Low – High	1,1	NA	25 - 50%
Inter-ramp	Low	1,15 - 1,2	1,0	25%
	Medium	1,2	1,0	20%
	High	1,2 - 1,3	1,1	10%
Overall	Low	1,2 - 1,3	1,0	15 - 20%
	Medium	1,3	1,05	5 - 10%
	High	1,5	1,1	≤ 5%

 Tabel 2. Design Acceptance Criteria untuk Lereng Tunggal dan Lereng Keseluruhan

Sumber: Knight Pièsold Consulting, 2012 dan Azizi, dkk., 2012

Analisis dilakukan dengan bantuan perangkat lunak (software) slide 6.0 dengan menggunakan batasanbatasan sebagai berikut:

4.1.1 Metode analisis yang digunakan

Kestabilan rancangan lereng dianalisis menggunakan metode irisan dengan metode analisis *Bhisop* yang di sederhanakan. Jumlah irisan, nilai toleransi dan maksimum iterasi, serta bentuk fungsi gaya geser antar irisan dalam perhitungan nilai Faktor Keamanan (FK) ditentukan sebagaimana ditunjukkan oleh Gambar 5 di bawah ini.

Gambar 5. Pengaturan Metode Analisis yang Digunakan.

4.1.2 Metode sampling, jumlah sampel, dan tipe analisis yang digunakan

Analisis probabilitas pada penelitian ini dijalankan menggunakan metode sampling *Monte Carlo*, metode yang umum digunakan dalam analisis probabilitas kestabilan lereng, dengan jumlah sampel ditentukan sebanyak 1000 buah. Sampel sebanyak 1000 dinilai sudah cukup mampu memberikan hasil perhitungan probabilitas kelongsoran yang konvergen, ditunjukkan oleh *convergance plot* terlihat pada Gambar 6 di bawah ini.

Gambar 6. Convergence Plot Probabilitas Kelongsoran untuk Jumlah Sampel 1000

Untuk jenis atau tipe analisis, digunakan global minimum method. Pada metode ini, analisis probabilitas dijalankan pada bidang gelincir kritis hasil analisis deterministik sehingga nilai hitung FK mean dan FK deterministic biasanya tidak jauh berbeda. Global minimum method mungkin tidak menunjukkan bidang gelincir kritis dengan nilai Reliability Index (RI) yang paling minimum atau nilai Probabilitas Kelongsoran (PK) yang paling maksimum, tapi waktu untuk analisis menggunakan metode ini jauh lebih singkat dibandingkan menggunakan metode overall slope. Terlihat pada Gambar 7 di bawah ini.

Project Settings		?	\times
General Groundvater Transient Statutee Random Numbers Design Standard Advanced Project Summary	Statistics Sensitivity Analysis Sampling Method: Monte-Carlo Number of Samples: 1000 Analysis Type © Global Minimum Overall Slope		
Defaults	OK.	Cano	el :

Gambar 7. Pengaturan Metode Sampling, Jumlah Sampel, dan Tipe Analisis yang Digunakan.

4.1.3 Seed dan tipe Random Number Generation (RNG) yang digunakan

RNG dalam analisis probabilitas berfungsi menghasilkan nilai acak dengan urutan nilai acak (sequence of random numbers) ditentukan dan tergantung pada nilai seed yang menjadi nilai input RNG. Penggunaan jenis RNG dan/atau nilai seed yang berbeda akan menghasilkan nilai acak yang berbeda pula. Untuk setingan RNG terlihat pada Gambar 8 dibawah ini.

Gambar 8. Pengaturan Nilai Seed dan Tipe RNG yang Digunakan

Pada penelitian ini, RNG dipilih mengunakan *Park* and Miller v.3 dengan seed value 11016 yang merupakan setting-an default pada software yang digunakan, terlihat pada Gambar 8. RNG *Park and Miller* v.3 mampu menghasilkan nilai acak tanpa pengulangan (repeating) hampir tak terbatas (231 nilai acak), lebih baik dibandingkan RNG Rand dengan jumlah maksimum nilai acak tanpa pengulangan 32.768

5. Hasil dan Pembahasan

5.1 Klasifikasi Masa Batuan pada Pit SB-II BK-14

5.1.1 Pemetaan Geoteknik

Pemetan geoteknik dilakukan pada permukaan lereng *higwall* pit SB-II BK-14 (*surface codition*) dapat dilihat pada Gambar 9. Pemetaan geoteknik dilakukan untuk mengetahui nilai RMR dan GSI.

RMR (*Rock Mass Rating*) dan GSI (*Geological Strenght Index*) di bobotkan untuk mengetahui klasifikasi massa batuan secara visual, Sebagai nilai *input* untuk *material propertis* dalam analisis probabilitas longsoran dan sensitifitas^[7], sebagai acuan agar data lebih mudah dibobotkan dan diamati serta meminimalkan pekerjaan dilakukan berulang maka dilakukan pemotretan secara visual dan pembuatan *scanline* secara *horizontal* sepanjang 200 m dengan spasi garis scanline *vertikal* 5 m. Seperti terlihat pada Gambar 10 di bawah

Gambar 9. Kondisi highwall Pit SB-II BK-14

Gambar 10. Scanline titik pengamatan dan pemetaan geoteknik highwall pit SB-II BK-14

Dari hasil perpotongan *scanline horizontal* dan *vertikal* yang digunakan untuk mengamati pos pembobotan nilai RMR dan GSI dinding highwall Pit Sb-II BK-14 didapat total sebanyak 41 titik pengamatanuntuk hasil RMR dan GSI pada *scanline* 2,3,4 dan 5 terlihat pada Tabel 5.

Fabel (3. Nilai	total	RMR	dan	GSI	untuk	keseluruhan
	batuan	setia	p scanl	line P	it SE	B-II BK	- 14.

section line pengamatan	lithologi	RMR rata- rata	GSI (sedimen)
section line 1	siltystone	74	69
section line 2	claystone	69	64
section line 3	sandstone	66	62
section line 4	sandyesilstone	65	62
section line 5	claystone	60	57
		66	62
	total rata-rata		

Secara keseluruhan Pada tabel 3. Menunjukan hasil rata-rata nilai pembobotan dari pemetaan *surface coditions* permukaan lereng *highwall* Pit SB-II BK-14 didapat nilai rata-rata pembobotan sebesar RMR 66 dan GSI 62 tergolong dalam kelas batuan, RMR "*good-fair rock*" dan GSI "*good- fair rock*",

5.1.1.1 Pengujian kuat tekan uniaksial dan sifat fisik (UCS) PT.TCM

1. Sifat mekanik

Berikut tabel hasil uji batuan dari lab PT.Trubaindo Coal Mining, terlihat pada tabel 4 dibawah ini

SAMPLE NO.	SAMPLE CODE	OVERBU RDEN	SAMPLE DESCRIPTION	UCS. TEST (MPa)
1	NG1408530G-01		CS (claystone)	2.80
2	NG1408530G-04		CS (claystone)	3.80
3	NG1408530G-07		STSY (sandyessiltstone)	5.89
4	NG1408530G-09		STSY (sandyessiltstone)	5.90
5	NG1408530G-11		SS (sandstone)	7.45
6	NG1408530G-12	OR coom 2000	SS (sandstone)	7.50
7	NG1408530G-15	OB Seam 5000	SS (sandstone)	7.50
8	NG1408530G-16		STCY (clayesiltstone)	3.80
9	NG1408530G-20		STCY (clayesiltstone)	2.80
10	NG1408530G-23		ST (siltstone)	6.75
11	NG1408530G-27		ST (siltstone)	6.80
12	NG1408530G-28		ST (siltstone)	6.90

Tabel 4. Hasil pengujian laboratorium sifat mekanik batuan PT. Trubaindo Coal Mining (UCS).

Dari hasil pengujian laboratorium lab PT.TCM di dapat nilai UCS yang paling tinggi pada *lithology Sandsatone* dengan nilai 7.5 Mpa dan yang paling rendah pada *lithology claystone* seniliai 2.8 Mpa batuan tergolong dalam kelas batuan "*medium rock-soft rock*"

2. Bobot Isi/Unit Weight/Density

Bobot isi merupakan salah satu parameter dari hasil uji sifat fisik yang penting dalam analisis kestabilan lereng. Nilai bobot isi dapat dibagi atas nilai bobot isi kering (*dry density*) dan bobot isi jenuh (*saturated density*) serta bobot isi asli (*natural density*). Hasil pengujian batuan dapat dilihat pada Tabel 5.

Tabel 5. Hasil	pengujian	sifat fis	ik batuan	nilai.
----------------	-----------	-----------	-----------	--------

no	ID Drilhole	lithology	bobot isi asli kN/m3	Bobot isi kering (kN/m³)	bobot isi jenuh (kN/m³)
1	NG14250004G_1		17.27	15.92	17.33
2	NG14250004G_2	claystone	19.07	17.13	18.99
3	NG14250004G_3		17.78	16.27	18.05
4	NG1475004G_1		17.93	16.89	19.13
5	NG1475004G_2	sandyessiltstone	17.71	16.81	18.80
6	NG1475004G_3		19.16	18.40	20.15
7	NG1450005G_4		23.14	20.86	22.90
8	NG1450005G_5	sandstone	20.31	18.08	19.96
9	NG1450005G_6		19.70	17.85	19.69
10	NG14250004G		19.20	19.76	20.25
11	NG14250004G	siltystone	17.64	17.61	19.01
12	NG14250004G		17.51	17.38	18.72

Dari hasil pengujian laboratorium (sifat fisik) niai bobot isi asli yang paling tinggi adalah lithology sandstone dengan nilai 23,14 kN/m3 dan yang paling kecil lithology claystone dengan nilai 17,21 kN/m3, Untuk nilai bobot isi kering lithology sandstone memiliki nilai yang paling tinggi sebesar 20,86 kN/m3 dan yang paling rendah dengan lithology claystone dengan nilai 15,92 kN/m3. Nilai bobot isi jenuh yang paling tinggi Dari hasil pengujian laboratorium (sifat fisik) niai bobot isi asli yang paling tinggi adalah lithology sandstone dengan nilai 23,14 kN/m3 dan yang paling kecil *lithology* claystone dengan nilai 17,21 kN/m3, Untuk nilai bobot isi kering lithology sandstone memiliki nilai yang paling tinggi sebesar 20,86 kN/m3 dan yang paling rendah dengan lithology claystone dengan nilai 15,92 kN/m3. Nilai bobot isi jenuh yang paling tinggi 22,90 kN/m3 untuk lithology sandstone, yang terkecil 17.33 kN/m3 dengan lithology claystone.

5.1.1.3 Analisis data dengan software RocLab

Sebelum menjadi sebagai nilai input *material propretis* analisis kestabilan lereng, data GSI dan UCS akan diolah dengan menggunakan menggunakan *software RocLab* untuk mendapatkan nilai perkiraan "*cohesi*" C dan "sudut gesek dalam" *phi* (ϕ) dari nilai hasil pembobotan dari seluruh *scanline*. berikut hasil analisis terlihat pada tabel 6 di bawah ini.

Tabel 6. Hasil analisis RocLab nilai input UCS dan GSI, menghasilkan output (cohesi, Phi)

	pos			input	roclab	hasil <i>r</i>	oclab
scanline	pengama	lithologi	RIVIR total	GSI	UCS	C (mpa)	Phi (°)
	pos 1	siltystone	70	65		178	34.33
	pos 2	siltystone	79	70		217	36.27
	pos 3	siltystone	72	65		178	34.33
	pos 4	siltystone	72	65		178	34.33
coopline 1	pos 5	siltystone	75	70	6.80	217	36.27
scanne I	pos 6	siltystone	75	70	0.80	217	36.27
	pos 7	siltystone	77	70		217	36.27
	pos 8	siltystone	74	69		208	35.9
	pos 9	siltystone	76	71		227	36.65
	pos 10	siltystone	73	68		200	35.21
	pos 11	claystone	64	59		85	22.8
	pos 12	claystone	61	58		82	22.43
	pos 13	claystone	55	53	2.2	70	22.61
	pos 14	claystone	63	59	5.5	85	22.8
scanline 2	pos 15	claystone	59	56		77	21.56
scannie z	pos 16	claystone	60	58		82	22.43
	pos 17	sandstone	68	63		220	41.74
	pos 18	sandstone	66	61		209	40.87
	pos 19	sandstone	71	66	_	239	43.02
	pos 20	sandstone	73	68		253	43.86
	pos 21	sandstone	70	64		226	42.17
	pos 22	sandstone	70	66	7.50	239	43.02
	pos 23	sandstone	68	63		220	41.74
	pos 24	sandstone	69	64		226	42.17
scanline 3	pos 25	sandstone	64	60		204	40.43
scannie s	pos 26	sandstone	64	60		204	40.43
	pos 27	sandstone	72	68		253	43.86
	pos 28	sandyesilstone	52	35		70	23.36
	pos 29	sandyesilstone	45	40		81	22.44
	pos 30	sandyesilstone	45	40		81	22.44
	pos 31	sandyesilstone	35	30		59	18.29
	pos 32	sandyesilstone	70	65	50	169	32.88
	pos 33	sandyesilstone	70	65	3.9	169	32.88
scanline 4	pos 34	sandyesilstone	70	65		169	32.88
	pos 35	sandyesilstone	70	65		169	32.88
	pos 36	sandyesilstone	70	65		169	32.88
	pos 37	sandyesilstone	65	60		143	30.83
	pos 38	claystone	58	53		70	20.61
scanline 5	pos 39	claystone	61	54	33	72	20.98
scannie 5	pos 40	claystone	61	54	3.3	72	20.98
	pos 41	claystone	61	58		82	22.43

Hasil nilai input uji kuat tekan UCS dan GSI kedalam *software RocLab* menghasilkan *cohesi* tertinggi terdapat pada mayoritas *lithology sandstone senilai* 253 kN/m² *Phi* sebesar 43,86^o dan yang terendah dimiliki *lithology sandyessiltystone, claystone* dengan nilai 70 kN/m² Phi sebesar 20,61^o, 22,61^o.

5.1.1.4 Pengukuran Muka Air Tanah (MAT)

Kedalaman muka air tanah diukur pada masingmasing titik pemantauan muka air tanah pada Pit SB-II BK-14, dengan menggunakan alat *water level meter*. Hasil pengukuran MAT ditunjukkan oleh Tabel 7. Dari data didapat rata-rata tinggi muka air tanah 17,19 m.

Tabel 7. Ha	sil pengukurar	n MAT pada F	Pit SB-II BK-14
-------------	----------------	--------------	-----------------

posisi titik sumur pantau pizometric	tinggi MAT (m)	tanggal pengukuran
	19.00	04-Jul-17
sidowall NG1508528G	18.84	25-Jul-17
sidewall NG15085280	19.26	07-Sep-17
	19.66	31-Oct-17
bigwall	12.67	16-Oct-17
ingwaii	12.91	31-Oct-17
lowwall	17.97	31-Oct-17

5.1.2.3 Statistik deskriptif untuk nilai input material propertis software slide dalam analisis probabilitas (Unit weight, cohesi, dan Phi "sudut gesek dalam") serta Muka Air Tanah.

Analisis *statistik deskriptif* dilakukan terhadap parameter yang penting dalam analisis kestabilan lereng, seperti nilai bobot isi, kohesi, dan sudut geser dalam (*Phi*). Analisis statistik deskriptif ditujukan untuk mengetahui ukuran pemusatan data (*central tendency*), ukuran penyebaran data (dispersi), dan distribusi data. *Central tendency* diukur berdasarkan nilai *mean* dan median, dispersi diukur berdasarkan nilai standar deviasi^[8], Berikut hasil statistik deskriptif terhadap nilai *unit weigth, cohesi, phi* dan MAT.

1. Statistik deskriptif material propertis (*unit weigt, cohesi, phi*)

Tabel 8. Statistik Deskriptif Pengujian Labboratorium

[siltstone]														
						Descriptive	Statistics							
parameter	Ν	Range	Minimum	Maximum	Sum	Mea	n	Std. Deviation	Variance	Skew ness		Ku	rtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error	
cohesi	10	49	178	227	2037	203.7	6.02227	19.0441	362.678	-0.58	0.687	-1.47	1.334	
phi	10	2.32	34.33	36.65	355.83	35.583	0.2977	0.94139	0.886	-0.568	0.687	-1.668	1.334	
unit_w eight_kering	3	2.7	17.12	19.82	54.21	18.07	0.87607	1.5174	2.303	1.713	1.225			
unit_w eight_jenuh	3	2	18	20		19	0.57735	1	1	0	1.225			
unit_w eight_asli	3	2	17	19		17.6667	0.66667	1.1547	1.333	1.732	1.225			
[claystone]														
Descriptive Statistics														
	N	Range	Minimum	Maximum	Sum	Mea	าก	Std. Deviation	Variance	Skew ness		Kurtosis		
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error	
cohesi	10	15	70	85	777	77.7	1.96101	6.20125	38.456	-0.156	0.687	-2	1.334	
phi	10	2.19	20.61	22.8	219.63	21.963	0.26666	0.84325	0.711	-0.624	0.687	-1.514	1.334	
unit_w eight_kering	3	1.32	15.8	17.12	49.18	16.3933	0.38684	0.67002	0.449	0.86	1.225			
unit_w eight_jenuh	3	1	17	18		17.6667	0.33333	0.57735	0.333	-1.732	1.225			
unit_w eight_asli	3	2	17	19		17.6667	0.66667	1.1547	1.333	1.732	1.225			
[sandstone]														
						Descriptive	Statistics							
	N	Range	Minimum	Maximum	Sum	Mea	n	Std. Deviation	Variance	Skew	ness	Ku	rtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error	
cohesi	11	49	204	253	2493	226.64	5.32622	17.66507	312.055	0.247	0.661	-1.082	1.279	
phi	11	3.43	40.43	43.86	463.31	42.1191	0.37226	1.23465	1.524	0.021	0.661	-1.134	1.279	
unit_w eight_kering	3	3	17.84	20.84	56.75	18.9167	0.96396	1.66962	2.788	1.695	1.225			
unit_w eight_jenuh	3	3	19	22		20	1	1.73205	3	1.732	1.225			
unit_w eight_asli	3	4	19	23		20.6667	1.20185	2.08167	4.333	1.293	1.225			
						[sandyess	siltstone]							
						Descriptive	Statistics							
	Ν	Range	Minimum	Maximum	Sum	Mea	n	Std. Deviation	Variance	Skew	ness	Ku	rtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error	
cohesi	10	110	59	169	1279	127.9	15.338	48.50304	2353	-0.459	0.687	-2.061	1.334	
phi	10	14.59	18.29	32.88	281.76	28.176	1.83912	5.8158	33.824	-0.647	0.687	-1.525	1.334	
unit_w eight_kering	3	1.59	16.79	18.38	52.04	17.3467	0.51718	0.89579	0.802	1.717	1.225			
unit_w eight_jenuh	3	2	18	20		19	0.57735	1	1	0	1.225			
unit_w eight_asli	3	2	17	19		17.6667	0.66667	1.1547	1.333	1.732	1.225			

Dari hasil statistik deskriptif seluruh material, didapat nilai rata-rata *cohesi* yang paling tinggi adalah 226,5 kN/m² dengan standar deviasi 17,66 untuk *lithology sandstone* dan nilai cohesi yang paling rendah adalah *claystone* 77,7 kN/m² dengan standar deviasi 6,20, untuk nilai phi (ϕ)/sudut gesek dalam yang paling tinggi terdapat pada *lithology sandstone* dengan nilai 42,11° dengan stadar deviasi sebesar 1,23, nilai yang paling rendah 21,96° dengan standar deviasi 0,8 untuk *claystone*, hasil *unit weight* nilai yang paling tinggi imiliki *sandstone* 18,96 kN/m³ dengan standar deviasi 1,6 dan yang paling rendah dimiliki oleh *sandyesiltstone* 17,34 kN/m³dengan standar deviasi senilai 0,89.

2. Statistik deskriptif Muka Air Tanah

Tabel 9. Statistik deskriptif MAT pit SB-II BK-14

Descriptive Statistics											
	Ν	Minimum	Maximum	Mean	Std. Deviation						
MAT	7	12.67	19.66	17.1871	3.04799						
Valid N (listwise)	7										

Dari hasil yang di tunjukan oleh table dia atas tinggi ratarata muka air tanah pada pit SB-II BK-14 pada bulan Agustus–Oktober 2017 yaitu dengan rata-rata +-17,1 meter.

5.2 Fungsi Distribusi Probabilitas dan Koefisien Korelasi Kohesi – Sudut Geser Dalam.

5.2.1 Fungsi Distribusi Probabilitas (Probability Density Function/PDF)

PDF (*Probability Density Function*) menggambarkan bagaimana nilai variabel acak terdistribusi. Menjadi variabel acak pada penelitian ini adalah bobot isi (*unit weight*), kohesi, sudut geser dalam, lokasi muka air tanah (*water table*), dan beban seismik horizontal (*horizontal seismic load*).

Properties material (bobot isi, kohesi (c), dan sudut geser dalam (Φ)) ditentukan sebagai variabel acak untuk masing-masing jenis material, Dalam analisis probabilitas, fungsi distribusi probabilitas yang umum digunakan adalah fungsi distribusi normal menunjukkan bahwa parameter kuat geser, terutama nilai sudut geser dalam, memiliki fungsi distribusi probabilitas (PDF) normal^[9].

Pada penelitian ini, bentuk PDF untuk masingmasing variabel acak diasumsikan normal kecuali variabel *horizontal seismic load* yang memakai distribusi *Exponential*. Dasar pemilihan bentuk dan parameter fungsi distribusi probabilitas dijelaskan sebagai berikut :

5.2.1.1 Properties material

Properties material meliputi bobot isi, kohesi (c), dan sudut geser dalam (Φ). Variabel properties material

diasumsikan berdistribusi normal yang terpotong atau dibatasi oleh nilai *relative minimum* dan *relative maximum* tertentu^[9].

Tabel	10.	Input	Bentuk	dan	Parameter	PDF	Properties
		Mater	ial				

#	Material Name 🥠	Property	Distribution	Mean	Std. Dev.	Rel. Min	Rel. Max										
1	topsoil	Cohesion	∧ Normal	100	1	3	3	11									
2	topsoil	Phi	∧ Normal	34	1	3	3										
3	topsoil	Unit Weight	∧ Normal	180	1	3	3	18									
4	siltstones	Cohesion	Normal	243.39	20.39	61.17	61.17	15									
5	siltstones	Phi	∧ Normal	32.85	1.02	3.06	3.06	18									
6	siltstones	Unit Weight	∧ Normal	19	1	3	3	1									
7	sandstones	Cohesion	∧ Normal	249.9	18.35	55.05	55.05	1									
8	sandstones	Phi	∧ Normal	40.29	1.24	3.72	3.72	1									
9	sandstones	Unit Weight	∧ Normal	20	1.7	5.1	5.1	1									
10	sandyessiltstone	Cohesion	∧ Normal	136.7	45	135	135										
11	sandyessiltstone	Phi	Normal	26.71	6.04	18.12	18.12										
12	sandyessiltstone	Unit Weight	🔨 Normal	19	0.5	1.5	1.5										
13	clay stones	Unit Weight	∧ Normal	17.66	0.3	11.67	11.67										
14	clay stones	Phi	Normal	19.95	1.08	3.84	3.84	1									
15	clay stones	Cohesion	∧ Normal	108.4	7.45	27.3	27.3										
_																	
4	Add Delete	Ed	it Correla	ation		Add Delete Edit Correlation DK Cancel											

Parameter PDF di atas, yakni nilai *mean* dan standar deviasi diperoleh dari hasil analisis statistik deskriptif, sedangkan nilai *relative minimum* dan *maximum* umumnya dihitung sebagai 3σ , dimana 99,7% nilai pada distribusi normal berada di sekitar *mean*. Hasil studi Hammah et al. membuktikan bahwa pemotongan (*truncation*) distribusi normal di 3σ sudah cukup baik dengan nilai hasil hitung probabilitas kelongsoran tidak jauh berbeda dibandingkan 5σ , dimana 99,9999% nilai acak dalam distribusi normal berada di sekitar rata-rata.

Relative minimum dan *maximum* mendefinisikan jarak antara nilai minimum dan maksimum sebenarnya terhadap nilai rata-ratanya, nilai minimum dan maksimum sebenarnya dapat dihitung sebagai berikut :

Actual minimum = mean - relative minimum Actual maximum = mean + relative maximum

Mengacu pada rumus di atas, nilai *relative minimum* harus lebih kecil atau sama dengan *mean* (*rel. min.* \leq *mean*) untuk menghindari nilai *properties material* yang negatif. *Relative minimum* = *mean* akan menghasilkan distribusi dengan *minimum* value = 0, perhatikan Gambar 11 di bawah ini.

Gambar 11. Distribusi Nilai Variabel Acak cohesi sandyesiltystone.

Cohesi sandyesiltystone diatas diasumsikan memiliki truncated normal distribution dengan nilai relative minimum = mean (137 kN/m³) dan relative maximum = 3σ (3 x 45 = 135 kN/m³), sehingga diperoleh nilai minimum sebenarnya (*input*) = 5 KN/m³ dan maksimum = $mean + relative maximum (137 + 135 = 272 KN/m^3)$. Gambar di atas juga menunjukkan bahwa sebagian besar nilai acak yang dihasilkan (*sampled*) berada pada $mean \pm 3\sigma$ yang menghasilkan probabilitas kelongsoran 0.145% atau 145 sampel dari total 1000 sampel, berada pada *range* data (0-120) ditunjukkan oleh area diarsir merah.

5.2.1.2 Lokasi muka air tanah (water table location)

Lokasi muka air tanah diasumsikan berdistribusi normal dengan nilai *normalized mean* = 0,5 dan *normalized standar deviation* = *mean*/3 (0,5/3 = 0,167). *Input* bentuk dan parameter PDF *water table location* ditunjukkan oleh Gambar 12.

Water Table Statistics	? ×
Water Table Boundaries	OK
Use Deterministic Water Table as: Not Used 🗸 🗸	Cancel
Draw a Maximum and a Minimum Water Table. The Mean Water Table will automatically be calculated.	
Location Statistics	
Normalized Mean:	
Statistical Distribution: 🔨 Normal 🧹	
Normalized Std. Dev.: 0.167	

Gambar 12. Input Bentuk dan Parameter PDF Water Table

Normalized mean = 0,5 menandakan lokasi muka air tanah rata-rata berada tepat di tengah antara lokasi minimum = 0 dan maksimum = 1. Pada distribusi normal sempurna (*non-truncated*), nilai minimum dan maksimum terletak kira-kira di 3σ dari *mean*, sehingga standar deviasi dapat dihitung sebagai *mean*/3.

Gambar 13. Ilustrasi Lokasi Muka Air Tanah (*Water Table Location*).

Gambar 14. Distribusi Nilai Variabel Acak Lokasi Muka Air Tanah.

Histogram diatas menunjukkan distribusi normal lokasi muka air tanah dengan nilai STD 0,167, *mean* 0,5, minimum 0, dan maksimum 1. Lokasi muka air tanah memiliki probabilitas kelongsoran 0.145% berada pada *mean* \pm 1STD (0,00 – 1), dan terpusat pad *range* (0,3-0,7) pada Gambar 14 ditunjukkan oleh area diarsir merah.

5.2.1.3 Beban seismik horizontal (horizontal seismic load)

Pada penelitian ini, rancangan lereng dianalisis dengan mempertimbangan koefisien beban seismik *horizontal* dan mengabaikan koefisien beban seismik vertikal akibat gempa bumi. Beban seismik horizontal selalu mengarah keluar lereng sehingga dapat menurunkan kestabilan lereng (*Webhelp Rocscience Slide*).

Gambar 15. Seismic Hazard Map

Beban seismik horizontal diasumsikan memiliki bentuk PDF *truncated exponential* dengan α_{max} 0,04g (perhatikan lokasi penelitian pada Gambar 15 di atas), α_{min} 0,00g, dan *mean value* $\alpha_{max}/3$ ^[9] Asumsi ini diyakini sesuai dengan kondisi pada lokasi penelitian yang sangat jarang mengalami gempa bumi besar.

Gambar 16. Input Bentuk dan Parameter PDF Horizontal Seismic Load.

Gambar 17. Distribusi Nilai Variabel Acak Horizontal Seismic Load.

Histogram di atas menunjukkan distribusi eksponensial variabel *horizontal seismic load* dengan *mean value* 0,2g, minimum 0.18g, dan maksimum 0,22g. Pada distribusi eksponensial, sebagian besar data terkonsentrasi pada nilai rendah, pada histogram di atas 0.145% data berada pada *range* 0 - 0,22g.

5.2.2 Koefisien Korelasi Sudut Geser Dalam dan Kohesi (Mohr-Coulomb Correlation Coefficients)

Studi terhadap berbagai jenis tanah oleh Lumb, Grivas, dan Wolff menyimpulkan bahwa kohesi dan sudut geser dalam tanah umumnya memiliki korelasi negatif dengan koefisien korelasi antara -0,72 sampai 0,35. Menunjukkan bahwa koefisien korelasi kohesi dan sudut geser dalam memiliki pengaruh signifikan terhadap hasil hitung probabilitas kelongsoran, dimana nilai koefisien korelasi negatif akan menurunkan nilai PK (Probabilitas Kelongsoran), sebaliknya untuk koefisien korelasi positif^[10].

Karena keterbatasan data untuk masing-masing jenis material, analisis korelasi untuk tingkat kepercayaan cukup tinggi tidak dapat dilakukan, sehingga pada penelitian ini *koefisien korelasi* ditentukan sama dengan nol, perhatikan Gambar8. Pemilihan KK = 0 akan menghasilkan distribusi nilai acak kohesi dan sudut geser dalam yang saling bebas satu sama lain.

#	Material	Apply	Coefficient								
1	topsoil		0								
2	siltstones	~	0								
3	sandstones	~	0								
4	sandyessiltstones 🔽 0										
6	clay stones	~	0								
6 clay stones Image: 0 * NDTE: Correlation coefficients apply only for cohesion and friction angle of materials with Mohr-Coulomb strength type. Image: Show applicable materials only											

Gambar 18. Input Mohr-Coulomb Correlation Coefficients

5.3 Analisis Probabilitas Kelongsoran Dengan Metode MonteCarlo Untuk Lereng Keseluruhan

Pendekatan yang digunakan dalam analisis kestabilan lereng keseluruhan antara lain sebagai berikut:

- 1. Analisis dilakukan pada setiap penampang yang berada pada setiap sections pada pit SB-II BK-14 serta tegak lurus terhadap jurus batubara, yakni penampang A-A', B-B',C-C' dan D-D'.
- 2. Lereng keseluruhan yang di analisis memiliki sudut masing-masing penampang 48°. 50°, 47° dan 31°, lereng dengan kondisi actual topo sequens penambanagan September 2017.
- Kekuatan geser material (C dan Φ) yang digunakan dalam analisis adalah kuat geser maksimum (kuat geser puncak) dari hasil analisis RocLab, kecuali material tanah (soil) sesuai dengan ketetapan nilai input analisis lereng pada PT. Trubaindo coal mining dimana nilai phi = 34° dan chohesi = 180 kn/m².
- 4. Nilai unit weight dalam input merupakan hasil uji sifat fisik (bobot isi jenuh) di laboratorium UNP.
- 5. Kondisi Muka air tanah sesuai dengan keadaan aktual yaitu +17 m.

Kondisi lereng secara keseluruhan terlihat pada Gambar 19 di bawah ini

Gambar 19. Kondisi Lereng highwall Pit SB-II BK-14 secara keseluruhan penampang A-A'.

Bentuk nilai input dan parameter PDF variabel acak *properties material* yang digunakan dalam analisis lereng keseluruhan ditunjukkan oleh Gambar 20 di bawah ini.

ſ	Material Statistics												
	#	Material Name 🗠	Property	Distribution	Mean	Std. Dev.	Rel. Min	Rel. Max					
	1	topsoil	Cohesion	∧ Normal	100	1	3	3					
	2	topsoil	Phi	∧ Normal	34	1	3	3					
	3	topsoil	Unit Weight	∧ Normal	180	1	3	3					
	4	siltstones	Cohesion	∧ Normal	203.39	19.39	58.17	58.17					
	5	siltstones	Phi	∧ Normal	35.85	0.9	2.7	2.7	(Lal				
	6	siltstones	Unit Weight	∧ Normal	18.45	1.5	4.5	4.5					
	7	sandstones	Cohesion	∧ Normal	226.63	226.63 17.35 42.11 1.23 18.91 1.66	52.05 3.69 4.98 126	52.05 3.69 4.98 126					
	8	sandstones	Phi	∧ Normal ∧ Normal ∧ Normal	42.11								
	9	sandstones	Unit Weight		18.91								
1	10	sandyessiltstone	Cohesion		127.7	42							
	11	sandyessiltstone	Phi	∧ Normal	28.17	5.8	17.4	17.4					
	12	sandyessiltstone	Unit Weight	∧ Normal	17.34	0.8	2.4	2.4					
	13	clay stones	Cohesion	∧ Normal	77.7	6.2	18.6	18.6					
	14	clay stones	Phi	∧ Normal	21.96	0.8	2.4	2.4					
	15	clay stones	Unit Weight	∧ Normal	16.39	0.6	1.8	1.8					
1													
	A	dd Delete	Edi	t Correla	ation		OK	Cano	el				

Gambar 20. *Input* Bentuk dan Parameter PDF *Properties Material* pada Analisis Lereng Keseluruhan

5.4 Analisis Probabilitas Kestabilan Lereng Keseluruhan (overallslope)

Langkah awal dalam analisis kestabilan lereng adalah pembuatan model lereng. Model lereng yang diinput dalam analisis ini merupakan desain actual plan penambangan sequens bulan september 2017 yang berbentuk crosection memiliki tipe 2D. Crosections dibuat dengan kondisi tegak lurus dengan strike batubara pit SB-II BK-14. Kondisi layer batuan penyusun lereng sesuai dengan kondisi lithologi actual. Serta nilai input material propertis merupakan hasil Nilai pembobotan RMR dan GSI dan pengujian sample batuan di laboratorium.

Hasil analisis merupakan representasi dari seluruh nilai input yang didapat dilapangan dan dibandingkan dengan kondisi aktual dimana terjadi longsoran pada keadaan aktual. Berikut hasil dari analisi probabilitas pada pit SB-II BK-14 terlihat pada Tabel 11 di bawah ini.

Tabel11.Hasilanalisislerengkeseluruhan pada penampangPit SB-II BK-14

Tinggi Lereng (m)*	Bench Width	Sudut (°) overall slope	FKdet	FKmean	PK (%)	Realibylity index normal	keterangan						
penampang A-A'													
38	-	47	1.25	1.25	10.5	1.2	TIDAK AMAN (dampak longsoran kecil)						
	penampang B-B'												
16	-	44	1.5	1.5	0	3.12	AMAN						
	penampang C-C'												
31	-	46	1.24	1.24	0	3.7	AMAN						
				per	nampang [)-D'							
7	-	31	1.8	1.8	0	24.5	AMAN						

Berdasarkan hasil analisis probabilitas kelongsoran dari seluruh penampang Pit SB-II BK-14 dengan kriteria PK menurut SRK Konsulting, Analisis menunjukan penampang A-A' dalam kondisi "TIDAK AMAN" dengan hasil analisis FS (deterministik) 1.25 dan Probabilitas kelongsoran 10.5% serta *Reliability Index* sebesar 1.6 (< 3) yang artinya kondisi desain lereng

"tidak bisa diandalkan" dengan dampak kelongsoran resiko kecil^[11]. Penampang B-B' secara keseluruhan berada dalam kondisi "AMAN" dengan hasil FS (deterministik) 1.5 dan memiliki nilai PK 0% dan Reliability Index bernilai 3.12 artinya lereng dalam kondisi desain "dapat diandalkan". Penampang C-C' lereng dalam kondisi **"AMAN"** dengan FS (determisnistik) 1.24 dan PK 0 % dengan Reliability Index 3.3 artinya kondisi desain "dapat diandalkan". Penampang D-D' lereng dalam kondisi "AMAN" dengan FS (deterministik) 1.8 dan PK 0 % Reliability Index 24.5 artinya desain dalam kondisi dan "dapat diandalkan", untuk penampang D-D' desain masih dalam tahap awal penambangan dan belum ada penambahan kedalaman pit yang signifikan.

Perbedaan nilai yang didapat dalam analisis sangat dipengaruihi material yang mendominasi geometri lereng, pada penampang A-A' dengan tinggi lereng overall slope 38 meter sudut 47°, material yang mendominasi lereng layer batuan kereas (siltstonesandstone) dibagian kaki lereng (toe) sampai 3/4 tinggi lereng, dibagian atas/puncak lereng (crest) batuan yang mendominasi yaitu batuan dengan kelas sedang (sandyesiltstone-claystone) dalam hasil analisis interprestasi terlihat minimum slip surface dibagian puncak lereng, ini menunjukan longsoran dengan PK 10.5%, akan terjadi pada bagian atas lereng, untuk lebih jelas terlihat pada Gambar 21 di bawah ini.

Gambar 21. Hasil analisis probabilitas kelongsoran penampang A-A'.

Pada penampang B-B' layer batuan yang mendominasi geometri lereng setinggi 16 meter dengan sudut 44^o adalah batuan keras (*sandstone*) dan batuan sedang-lunak (*sandyesiltstone-claystone*) merata pada geometri lereng mulai dari sebahagian kaki lereng hingga puncak dengan arti lain dikaki lereng batuang keras dan sebagian lagi batuan sedang-lunak hingga puncak lereng, longsoran dengan PK 0% dengan FS 1.5, *minimum slip surface* berada pada sebahagian tinggi lereng, kondisi pit masih dalam tahap pengalian menuju final desain tidak menutup kemungkinan akan ada penikatan nilai PK pada penampang B-B', untuk lebih jelas terlihat pada Gambar 22 di bawah ini.

Gambar 22. Hasil analisis probabilitas kelongsoran Penampang B-B'.

Penampang C-C' dengan kondisi lereng aman dengan FS 1.24 dan PK 0 %, batuan yang mendominasi lereng dengan geometri tinggi 30m dan sudut 46°, layer batuan pada kaki lereng (*toe*) adalah batuan sedang-lunak (*sandyesiltstone-claystone*) dan bagian puncak lereng didominasi dengan batuan kuat (*siltstone*), *minimum slip surface* berada pada tengah lereng, untuk lebih jelas terlihat pada Gambar 23 di bawah ini.

Gambar 23. Hasil analisis probabilitas kelongsoran Penampang C-C'.

Penampang D-D' dengan tinggi lereng 7 meter sudut 31º penampang ini masih dalam kondisi aman dengan FS 1.8 dan PK 0% dikarenakan belum banyak dilakukan nya aktifitas pendalaman pit dan lereng masih didominasi batuan kuat *(siltstone)*. Serta tidak menutup kemungkinakna nilai PK akan naik seiring dilakukannya aktifitas pendalam pengalian pada penampang D-D'. Terlihat pada Gambar 24 di bawah ini.

Gambarb 24. Hasil analisis probabilitas kelongsoran Penampang D-D'.

Dari hasil analisis FK dan PK pada pit SB-II BK-14 disarankan untuk merobah desain geometri lereng/redisain dengan memperkecil sudut lereng keseluruhan dan membuat *bench/single slope* yang mengacu pada penampang A-A'.

5.5 Analisis sensitifitas lereng keseluruhan

Analisis sensitivitas pada lereng keseluruhan ditujukan untuk mengetahui parameter masukan yang paling berpengaruh terhadap kestabilan lereng dari masingmasing parameter tersebut. Hasil analisis sensitivitas pada lereng keseluruhan untuk masing-masing penampang dengan beberapa variasi tinggi dan sudut ditunjukkan oleh Gambar 25 di bawah ini.

Gambar 25. Sensitifitas Penampang A-A' dengan ketinggian 38 meter dan sudut 47 °.

Dilihat dari gambar *sensitivity plot* diatas material yang mempengaruhi kestabilan lereng pada penampang A-A' yaitu layer batuan *sandyesslitstone* dengan material input *cohesi* serta nilai *Phi* (°).

Gambar 26. Sensitifitas Penampang B-B' dengan ketinggian 16 meter dan sudut 44°.

Pada penampang B-B' analisis kestabilan lereng dipengaruihi layer batuan *sandyesslitstone* dengan nilai input material *cohesi* dan sudut *Phi* (°).

Gambar 27. Sensitifitas Penampang C-C' dengan ketinggian 31 meter dan sudut 46 °.

Pada penampang C-C' analisis kestabilan lereng dipengaruihi layer batuan *sandyesslitstone* dan batuan *siltstone* dengan nilai material input *cohesi* dan *Phi* (°).

Gambar 38. Sensitifitas Penampang D-D' dengan ketinggian 6.5 meter dan sudut 31 °.

Dari penampang D-D' seluruh parameter dalam kondisi tidak berpengaruh dan lereng dalam kondisi aman.

Berdasarkan Gambar grafik *sensitivity plot* di atas dapat dilihat analisis sensitivitas, serta diidentifikasi pengaruh masing-masing parameter masukan terhadap kestabilan lereng terlihat sebagai berikut :

- 1. Parameter kuat geser (kohesi dan sudut geser dalam) merupakan parameter yang paling berpengaruh terhadap kestabilan lereng, sedangkan parameter bobot isi dan beban seismik horizontal berpengaruh tidak cukup signifikan terhadap kestabilan lereng pada setiap penampang
- Nilai cohesi sandyesiltstone yang banyak memberikan pengaruh yang signifikan terhadap kestabilan lereng keseluruhan pada penpenampang A-A', B-B' dengan nilai input cohesi dan sudut gesek dalam. Untuk penampang C-C' yang mempengaruhi adalah layer batuan sandyesiltstone, siltstone dengan input cohesi dan sudut gesek dalam Phi(^o).
- 3. Pada crosections D-D' pengaruh semua parameter nilai input material belum berpengaruh signifikan karena desain geometri lereng masih dalam tahap penurunan elevasi yang signifikan, akan tetapi tidak menutup kemungkinin seiring berjalannya waktu dan aktifitas penambangan dan penurunan elevasi pada penampang D-D' nilai probabilitas kelongsoran dan pengaruh material input akan mempengaruhi kestabilan lereng.
- 4. Jenis parameter kuat geser (kohesi atau sudut geser dalam) dan jenis material yang paling berpengaruh berbeda untuk masing-masing penampang sebagai fungsi perbedaan kondisi perlapisan. Secara umum, material yang paling berpengaruh merupakan material mayoritas pada penampang tersebut.

5.6 Rekomendasi Desain Geometri (Lereng kesluruhan dan lereng tunggal)

Secara keseluruhan dari setiap penampang yang telah dianalsisi memiliki nilai PK yang berbeda, serta dari hasil anlisis sensitifitas parameter input berpengaruh besar terhadap kestabilan lereng kususnya nilai dari uji kuat geser (kohesi dan sudut gesek dalam), salah satu langkah untuk mengurag probabilitas kelongsoran dengan me redesain geometri lereng dengan standar *Safety of Factor* minimum sebesar 1.2 menurut SOP PT.TCM.

5.6.1 Lereng keseluruhan (overal slope)

Untuk analsisi lereng keseluruhan berpatokan kepada penampang A-A' karena penampang ini sudah *fase* disain *final pit* (V-cut) sehinga setelah di redisain seluruh penampang (B-B', C-C' dan D-D) mengikuti redisain dari penampang A-A', redesain ini hanya berlaku sampai batas layer *lithology* yang sama. Berikut hasil redisain penampang A-A' Tabel 12.

Jenis lereng	Tinggi Lereng (m)	penambaha n single slope	Bench Width (m)	Sudut interam/single slope (°)	Sudut overal slope (°)	FK (det)	FK (mean)	PK (%)	Realibylity index	ket	
			Р	enampang A-A'ı	redesain_1	L					
keseluruhan	36	3	-	-	40	1.5	1.5	0	4.45	desain	
	9		6.5	50		6	6	0	7	dapat di	
tunggal	16	-	8.5	56	-	4.1	4.1	0	9.3	andalkan	
	10		-	50		1.4	1.5	0	3.6		
			P	enampang A-A' r	edesain _2	2					
keseluruhan	36	3	-	-	40	1.4	1.4	0	7.4	desain	
	9		5.5	50		6	6	0	10	dapat di	
tunggal	16	-	8	65	-	4.1	4.1	0	9.18	andalkan	
	11		-	49		1.25	1.25	0	4.2		
			Р	enampang A-A'ı	redesain_3	3					
keseluruhan	36.2	3	-	-	40	1.6	1.6	0	3.6	desain	
tunggal	7		6.5	50		7.2	7.2	0	8.3	dapat di	
	17	-	8.5	65	-	3.6	3.6	0	9.2	andalkan	
	11		-	49		1.25	1.25	0	4.7		

Tabel 12. Hasil analisis recomendasi desain penampang A-A' lereng keseluruhan

Dari hasil analisis re-desain penampang A-A'dapat dilihat dalam penjelasan berikut :

5.6.1.1 Redisain1

Desain lereng dibuat dengan rancangan tinggi lereng dikurangi dari 43m menjadi 36m, sudut lereng keseluruhan dikurangi dari 47° menjadi 41°. Dan membagi menjadi beberapa singlel slope pada penampang A-A' *redesain1* membuat single slope dengan tinggi 9m,16m,10m dengan lebar bench 8.5 dan 6.5m dengan sudut 50°, 56°,52° menghasilkan FS 1.4 Pk 0%, dan *Reliability Index* sebesar 4.56 dengan keterangan desain dapat diandalkan.

5.6.1.2 Redisain2

Desain lereng dibuat dengan rancangan tinggi lereng dikurangi dari 43m menjadi 36m, sudut lereng keseluruhan dikurangi dari 47° menjadi 40°. Dan membagi menjadi beberapa singlel slope penampang A-A' *redesain2* membuat single slope dengan tinggi 9m,16m,11m dengan lebar bench 5.5m dan 8m dengan sudut 50°, 56°,49° menghasilkan FS 1.25 Pk 0%, dan *Reliability Index* sebesar 7.4 dengan keterangan desain dapat diandalkan.

5.6.1.3 Redisain3

Desain lereng dibuat dengan rancangan tinggi lereng dikurangi dari 43m menjadi 36.3m, sudut lereng keseluruhan dikurangi dari 47^o menjadi 40^o. Dan membagi menjadi beberapa singlel slope penampang A-A' *redesain2* membuat single slope dengan tinggi 7m,17m,11m dengan lebar bench 6.5m dan 8.5m dengan sudut 50^o, 56^o,49^o menghasilkan FS 1.6. Pk 0 %, dan *Reliability Index* sebesar 3.76 dengan keterangan desain dapat diandalkan.

6. Kesimpulan dan Saran

Sebagai hasil dari penelitian ini, dapat dibuat kesimpulan sebagai berikut:

6.1 Kesimpulan

- 1. Nilai kuat tekan maksimum material pada daerah penelitian ini sebelum dilakukannya aktifitas penambangan yang paling besar senilai 8.9 Mpa dan yang paling kecil sebesar 4 Mpa sehingga berdasarkan grafik Kolleth maka semua material dapat digali menggunakan dragline, shovel, backhoe, surface miner, atau BWE dan tidak memerlukan peledakan.
- Berdasarkan hasil pemetaan geoteknik dan pengujian laboratorium, klasifikasi massa batuan menurut RMR dan GSI, didapat nilai rata-rata pembobotan sebesar RMR 66 dan GSI 62 tergolong dalam kelas batuan, RMR "good-fair rock" dan GSI "good- fair rock",
- 3. Hasil analisis probabilitas kelongsoran dari seluruh penampang Pit SB-II BK-14 dengan kriteria PK menurut (SRK Konsulting, 2011) sebagai berikut :
 - Penampang A-A' dalam kondisi "TIDAK AMAN" dengan hasil analisis FS (deterministik) 1.25 dan Probabilitas kelongsoran 10.5% serta Reliability Index sebesar 1.6 (< 3) yang artinya kondisi desain lereng "tidak bisa diandalkan" dengan dampak kelongsoran resiko kecil.
 - b. Penampang B-B' secara keseluruhan berada dalam kondisi "AMAN" dengan hasil FS (deterministik) 1.5 dan memiliki nilai PK 0% dan Reliability Index bernilai 3.12 artinya lereng dalam kondisi desain "dapat diandalkan".
 - c. Penampang C-C' lereng dalam kondisi "AMAN" dengan FS (deterministik) 1.24 dan PK 0 %

dengan Reliability Index 3.3 artinya kondisi desain "dapat diandalkan".

- d. Penampang D-D' lereng dalam kondisi "AMAN" dengan FS (deterministik) 1.8 dan PK 0 % Reliability Index 24.5 artinya desain dalam kondisi dan "dapat diandalkan", penampang D-D' desain masih dalam tahap awal penambangan dan belum ada penambahan kedalaman pit yang signifikan.
- 4. Dari hasil analisi sensitifitas menunjukan parameter yang paling berpengaruh merupakan hasil uji kuat geser batuan nilai (kohesi dan sudut gesek dalam) terhadap kestabilan lereng secara keseluruhan pada seluruh penampang. Sedangkan parameter bobot isi, lokasi muka air tanah, dan koefisien beban seismik horizontal tidak berpengaruh yang signifikan terhadap kestabilan lereng.
- 5. Secara umum, material yang paling berpengaruh terhadap kestabilan lereng merupakan material mayoritas pada geometri lereng penampang tersebut.
- 6. Rekomendasi desain geometri lereng dari hasil analisis penampang A-A' tinggi lereng dikurangi dari 43m menjadi 35 dan 36m, sudut lereng keseluruhan dikurangi dari 47° menjadi 40°. Dan membagi menjadi beberapa singlel slope pada penampang A-A' dengan lebar bench 8.5m, 6.5m dan 5m. Hasil dapat dilihat pada lampiran 5.

6.2 Saran

- 1. Pemantauan lereng yang terjadwal secara periodik perlu dilakukan untuk mengetahui besar perpindahan massa batuan akibat penggalian. Data hasil pemantauan merupakan data yang paling mewakili kondisi kekuatan massa batuan dalam keadaan actual.
- 2. Dari hasil analisis Keberadaan air berpengaruh tidak signifikan terhadap kemantapan lereng, akan tetapi pengontrolan sangat perlu dilakukan agar tidak berpengaruh untuk kestabilan lereng.
- 3. Pemetaan geoteknik dan pembobotan nilai RMR dan GSI untuk lebih akurat pengontrolan dan pembobotan dilakukan pada saat penurunan elevasi pit per 5-10 meter.

Daftar Pustaka

- [1] Azizi, Masagus A. & Rr Harminuke Eko Handayani. Karakterisasi Parameter Masukan untuk Analisis Kestabilan Lereng Tunggal (Studi Kasus di PT. Tambang Batubara Bukit Asam Tbk. Tanjung Enim, Sumatera Selatan". Paper. Prosiding Seminar Nasional Vol.3 No.1 (2011)
- [2] Masagus A., dkk. Analisis Risiko Kestabilan Lereng Tambang Terbuka (Studi Kasus Tambang Mineral X. Paper. Prosiding Simposium dan Seminar Geomekanika Ke-1 Vol.4 No.1 (2012)

- [3] Indian Institute of Technology. *Chapter 13:* Sensitivity, Probability and Reliability Analysis. Lecture. India: IIT. Vol.13 No.1 (2012).
- [4] Yusuf, A. Muri. *Metodologi Penelitian Teliti & Hati-hati*. Jakarta: Prenamedia Group (2005).
- [5] El-Ramly, H., et al. Probabilistic Slope Stability Analysis for Practice. Jurnal. NRC Research Press. Geo-slope International. 2013. Stability Modeling with SLOPE/W. Canada: Geo-slope International, Ltd. Vol.12 No.1 (2002)
- [6] Herdian, Aldri, dkk.. Kajian Rancangan Lereng Rencana Tambang Batubara Muara Tiga Besar Selatan Tahun 2006/2007 di Pit PT. Tambang Bukit Asam. Jurnal. TPT PERHAPI 2006. Jakarta: Aksara Buana. Vol.6 No.1 (2006)
- [7] Ginanjar, ginan dkk. Analisis Baliklongsoran Lowwall Pit B3 di Tambang Batubara PT.BJA menggunakan Metode Probabilistik Monte Carlo .jurnal. Vol.5 No.3 (2015)
- [8] Wardhana, Aditya. Penentuan Tipe Fungsi Distribusi Probabilitas Sifat Mekanik Batuan Sebagai Analisa Awal Perhitungan Faktor Keamanan Lereng. Bandung: Vol.10 No. 2. (2011)
- [9] Pathak, Shubh, et al.. Application of Probabilistic Approach in Rock Slope Stability Analysis – Experience from Nepal. Jurnal. Tokyo: Universal Academy Press Vol.13 No. 2 (2006)
- [10] El-Ramly, H., et al. Probabilistic Slope Stability Analysis for Practice. Jurnal. NRC Research Press. Geo-slope International. 2013. Stability Modeling with SLOPE/W. Canada: Geoslope International, Ltd. Vol 46 No. 2 (2002)
- [11] Gibson, William. Probabilistic Methods for Slope Analysis and Design. Jurnal. Australian Geomechanic . Vol 46 No. 2 (2011)
- [12] Hammah, Reginald, T. Yacoub & J. Curran. The Influence of Correlation and Distribution Truncation on Slope Stability Analysis Results. Vol 46 No. 3. (2011)
- [13] Knight Piesold Ltd.Taseko Mines Limited: New Prosperity Gold Copper Project – Preliminary Pit Slope Design. Report. Vancouver: Knight Piesold Consulting Vol 46 No. 8.(2012)
- [14] Prabandaru, Prasodo Datu.SOP *Pengambilan* Sampel Geoteknik PT Multi Tambang Jaya Utama. Yogyakarta: LPPM UPNVY. (2015)
- [15] Pathak, Shubh, et al. Application of Probabilistic Approach in Rock Slope Stability Analysis – Experience from Nepal. Jurnal. Tokyo: Universal Academy Press. Vol.3 No.1 (2006)
- [16] Robbyansyah P., dkk. Rancangan Teknis Lereng Penambangan Batubara dengan Program Galena 3.1. Jurnal. TPT PERHAPI 2007. Jakarta: Aksara Buana.Vol.2.No.1(2007)
- [17] Santoso, Eko, dkk. Pendekatan Probabilistik dalam Analisis Kestabilan Lereng pada Daerah Ketidakstabilan Dinding Utara di PT. Newmont Nusa Tenggara. Paper. Prosiding TPT XXII PERHAPI 2013.