http://ejournal.unp.ac.id/index.php/kimia

Sintesis Magnetik Kuantum Dot Fe₃O₄ Dengan Metode Kopresipitasi

Abdul Hamid¹, Isnaeni², Ali Amran¹, Deski Beri^{1*}

¹Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas, Universitas Negeri Padang Jln. Prof. Dr. Hamka, Air Tawar, Padang, Indonesia

²Badan Riset dan Inovasi Nasional

Jln. Kawasan Puspiptek Setu Serpong, Kota Tangerang Selatan, Banten, Indonesia

*deski.beri@fmipa.unp.ac.id

Abstract — The unique properties of the magnetic quantum dot Fe_3O_4 make it widely synthesized by different methods and applied in the biomedical field. The synthesis method plays an important role in determining the optical properties of the magnetic quantum dot Fe_3O_4 . This study aims to determine the magnetic synthesis of quantum dot Fe_3O_4 coated with oleic acid by coprecipitation method. Quantum dot Fe_3O_4 magnetic. The results of the FTIR analysis showed five main absorption bands namely O-H (3371,46 cm⁻¹), C-H (2924,32 cm⁻¹), C=C (1643,97 cm⁻¹), C-O from oleic acid, and Fe-O (585 cm⁻¹) which indicated that the magnetic quantum dot Fe_3O_4 was successfully functionalized with oleic acid.

Keywords — Magnetic quantum dot Fe_3O_4 , coprecipitation method, oleic acid

I. PENGANTAR

Perkembangan sintesis magnetik kuantum dot Fe_3O_4 telah mengalami peningkatan dalam beberapa tahun terakhir. Sifat unik dari magnetik kuantum dot Fe_3O_4 seperti luas permukaan yang tinggi, superparamagnetisme, dan ukurannya yang kecil (kurang dari 10 nm) menjadikannya banyak diteliti dan diaplikasikan di berbagai bidang, misalnya aplikasi sensor lingkungan, fotokatalis, pengiriman obat yang ditargetkan, baterai, adsorben, dan pencitraan biologis (bioimaging). Berbagai metode sintesis telah banyak dilakukan untuk memperoleh magnetik kuantum dot Fe_3O_4 , diantara metode sintesis tersebut adalah hidrotermal, kopresipitasi kimia, solgel, hidrolisis, dan solvotermal [1]–[5].

Beberapa probe kuantum dot telah diteliti sebelumnya untuk aplikasi biomedis, seperti pencitraan biologis (bioimaging), terapi fototermal, dan teranostik diantaranya adalah kuantum dot $Cu_2(OH)PO_4$ yang dilapisi poli (asam akrilat), kuantum dot grafena, kuantum dot fosfor hitam, kuantum dot karbon, dan kuantum dot AgInSe₂-ZnSe [6]–[10].

Magnetik kuantum dot Fe_3O_4 juga digunakan sebagai kokatalis untuk mendegradasi rhodamine B. Keunggulan dari magnetik quantum dot Fe_3O_4 ini sebagai ko-katalis adalah dapat meningkatkan penyerapan cahaya tampak dari fotokatalis dan memperkuat transport elektron oksidator [3]. Karena, sifat – sifat dari magnetik kuantum dot Fe_3O_4 yang unggul seperti ukurannya yang kecil (kurang dari 10 nm), superparamagnetik dengan momen magnet yang dapat menginduksi magnet, dan biokompabilitas yang tinggi sehingga mudah terdegradasi dengan cepat ketika di aplikasikan dalam lingkungan biologis menyebabkan magnetik kuantum dot Fe_3O_4 dapat dijadikan sebagai kandidat agen biomedis seperti pencitraan biologis (*bioimaging*) [1], [11].

Berdasarkan keunggulan magnetik kuantum dot yang disebutkan diatas, maka peneliti tertarik untuk melakukan sintesis magnetik kuantum dot Fe₃O₄ yang difungsionalisasi asam oleat.

II. METODA PENELITIAN

A. Alat dan Bahan

Peralatan yang digunakan pada penelitian ini terdiri atas peralatan analisis dan peralatan karakterisasi. Peralatan untuk analisis adalah labu leher tiga, magnetic stirrer, spin bar, termometer, statif dan klem, penyumbat karet, labu ukur, gelas kimia, tabung trap, tabung gas N₂, regulator, selang silikon, pita teflon, selang air, kondensor, pipa kaca L, syringe, batang pengaduk, spatula, kaca arloji, corong pemisah, penangas air, vortex mixer, tabung reaksi, dan tabung syringe. Peralatan untuk karakterisasi adalah FTIR (*Fourier Transform Infrared*. Adapun bahan-bahan yang digunakan untuk penelitian ini terdiri dari FeCl₃.6H₂O, FeCl₂.4H₂O, amonium hidroksida 25%, asam oleat, n-heksan, dan aquades.

B. Sintesis Magnetik Kuantum Dot Fe₃O₄ (MKD-Fe₃O₄)

Prosedur sintesis MKD-Fe₃O₄ merujuk pada prosedur penelitian sebelumnya [12]. Sebanyak 13,5 g FeCl₃.6H₂O dan 6 g FeCl₂.4H₂O dilarutkan dalam 150 mL aquades di bawah

Periodic , Vol 13 No 2 (2024)

Chemistry Journal of Universitas Negeri Padang

e-ISSN: 2339-1197

aliran nitrogen dengan pengadukan kuat. Kemudian 40 mL amonium hidroksida ditambahkan dengan cepat dan dipanaskan selama 2 jam pada suhu 100°C. Setelah kopresipitasi MKD-Fe₃O₄, suspensi MKD-Fe₃O₄ dengan 5,5 g asam oleat dipanaskan pada suhu 90 °C selama 5 jam. Selanjutnya MKD-Fe₃O₄ diekstraksi dengan n-heksan.

C. Ekstraksi Magnetik Kuantum Dot Fe₃O₄

Endapan MKD-Fe₃O₄ dicuci dengan n-heksan. Endapan MKD-Fe₃O₄ dan 20 mL n-heksan ditambahkan kedalam corong pisah kemudian corong pisah diguncang beberapa kali untuk mengeluarkan gas dari corong pisah. Ulangi prosedur yang sama sampai semua endapan MKD-Fe₃O₄ terekstrak. Adapun skema penelitian ini terlihat pada Gambar 1.

Gambar 1. Skema penelitian

III. HASIL DAN PEMBAHASAN

A. Magnetik Kuantum Dot Fe₃O₄

Metode sintesis magnetik kuantum dot Fe₃O₄ (MKD-Fe₃O₄) yang digunakan dalam penelitian ini adalah kopresipitasi.

Proses reaksi berawal ketika larutan encer Fe^{2+} dan Fe^{3+} direaksikan di dalam labu leher 3 dibawah aliran N₂ untuk mencegah terjadinya oksidasi pada larutan besi. Reaksi diatur pada suhu 100 °C selama 2 jam untuk mengubah senyawa H₂O menjadi H⁺ dan OH⁻. Warna larutan yang dihasilkan dari proses pemanasan antara Fe²⁺ dan Fe³⁺ menghasilkan larutan berwarna kuning kecoklatan seperti terlihat pada Gambar 2.

Gambar 2. Larutan Fe(OH)2 dan Fe(OH)3

Menurut (Daoush, 2017), larutan berwarna kuning kecoklatan tersebut merupakan senyawa $Fe(OH)_2$ dan $Fe(OH)_3$. Senyawa – senyawa ini terbentuk pada pH 8 melalui reaksi hidroksilasi antara ion - ion Fe^{2+} dan Fe^{3+} terhadap OH⁻.

Proses reaksi dilanjutkan dengan penambahan amonia berlebih kedalam larutan besi selama 2 jam. Perubahan warna larutan berubah cepat dari kuning kecoklatan menjadi hitam. Menurut (Daoush, 2017; Mascolo et al., 2013), larutan berwarna hitam ini merupakan magnetit atau magnetik kuantum dot Fe_3O_4 (Gambar 3) [13], [14]. http://ejournal.unp.ac.id/index.php/kimia

Gambar 3. Larutan magnetik kuantum dot Fe₃O₄.

Senyawa magnetit terbentuk melalui reaksi dekomposisi dari $Fe(OH)_3$ menjadi FeOOH, kemudian senyawa FeOOH bereaksi dengan $Fe(OH)_2$ membentuk magnetit. Proses reaksi kemudian dilanjutkan dengan penambahan asam oleat kedalam larutan untuk memfungsionalisasi permukaan magnetik kuantum dot Fe_3O_4 yang ditunjukkan pada gambar 4.

Gambar 4. Magnetik kuantum dot $\mathrm{Fe}_3\mathrm{O}_4$ setelah ditambahkan dengan asam oleat

Proses fungsionalisasi ini berlangsung selama 5 jam. Tujuan fungsionalisasi adalah untuk melindungi permukaan magnetik kuantum dot Fe₃O₄ dari reaksi oksidasi. Asam oleat digunakan untuk memfungsionalisasi permukaan MKD-Fe₃O₄ karena memiliki beberapa keunggulan diantaranya adalah dapat membentuk monolayer pelindung yang padat, sehingga menghasilkan partikel yang sangat seragam, serta dapat membentuk struktur berlapis tunggal, ganda, atau berlapis banyak pada permukaan MKD-Fe₃O₄ (gambar 6) [15], [16]. Akhir reaksi ini menghasilkan larutan berwarna coklat tua (gambar 5).

Gambar 5. Magnetik kuantum dot Fe₃O₄.

Menurut (Shahid & Choi, 2020), magnetik kuantum dot Fe_3O_4 berwarna coklat tua terbentuk pada pH 12 [17]. Magnetik kuantum dot Fe_3O_4 hasil sintesis kemudian diekstraksi menggunakan n-heksan karena senyawa hasil sintesis bersifat nonpolar setelah difungsionalisasi dengan asam oleat. Proses ekstraksi bertujuan untuk menghilangkan amonia berlebih dan magnetik kuantum dot Fe_3O_4 berkualitas rendah.

Gambar 6. Magnetik kuantum dot ${\rm Fe_3O_4}$ yang difungsionalisasi dengan asam oleat

B. Karakterisasi FTIR Magnetik Kuantum Dot Fe₃O₄ (MKD-Fe₃O₄)

Karakterisasi MKD-Fe₃O₄ menggunakan FTIR bertujuan untuk memperoleh informasi tentang gugus fungsi dan jenis ikatan yang terbentuk. Rentang bilangan gelombang yang dilakukan pada analisis ini adalah 400-400 cm⁻¹. Berdasarkan spektrum FTIR pada gambar 4 dapat diamati bahwa puncak karakteristik dari MKD-Fe₃O₄ adalah 585 cm⁻¹, yang merupakan pita yang sesuai dengan getaran Fe-O, mengkonfirmasi adanya oksida besi [18].

Pita serapan pada bilangan gelombang 1643,97 cm⁻¹ dengan intensitas sedang merupakan gugus C=C, sedangkan pada pita serapan asam oleat pada bilangan gelombang 1700 cm-1 dengan intesitas kuat merupakan gugus C=O. Pita ini hilang ketika asam oleat bereaksi dengan MKD-Fe₃O₄. Pita serapan pada bilangan gelombang 1066,23 cm⁻¹ merupakan puncak dari gugus C-O yang menunjukkan bahwa asam oleat diserap secara kimiawi pada MKD-Fe₃O₄ sebagai karboksilat [19].

Periodic , Vol 13 No 2 (2024)

Chemistry Journal of Universitas Negeri Padang

http://ejournal.unp.ac.id/index.php/kimia

Gambar 4. Spektrum FTIR magnetik kuantum dot Fe₃O₄

Pita kuat pada 3371,46 cm⁻¹ dikaitkan dengan vibrasi ulur O-H simetris dari gugus hidroksil yang diserap ke bagian permukaan partikel MKD-Fe₃O₄ yang tidak ditempati oleh gugus asam oleat serta v(O-H) untuk gugus OH berikatan H (dari asam oleat). Menurut (Shahid & Choi, 2020), Pita kuat ini mengindikasikan adanya molekul air pada permukaan MKD-Fe₃O₄ [17].

Dua pita tajam pada 2924,32 dan 2859,92 cm⁻¹ masingmasing dikaitkan dengan regangan CH_2 asimetris dan simetris. Hasil ini merupakan bukti adanya lapisan pelapis organik pada permukaan partikel MKD-Fe₃O₄. Molekul asam oleat dalam keadaan teradsorpsi pada magnetit mengalami medan permukaan padat. Akibat dari peristiwa ini adalah pita pita khas asam oleat bergeser ke daerah frekuensi yang lebih rendah, sehingga menyebabkan rantai hidrokarbon dalam monolayer yang mengelilingi MKD-Fe₃O₄ berada dalam keadaan kristal paket tertutup [19], [20].

IV. KESIMPULAN

Sintesis magnetik kuantum dot Fe₃O₄ yang difungsionalisasi dengan asam oleat berhasil dilakukan dengan metode kopresipitasi.

UCAPAN TERIMAKASIH

Terimakasih penulis ucapkan kepada Bapak Dr.rer.nat. Deski Beri, S.Si., M.Si, Prof. Drs. Ali Amran, M.Pd, M.A, Ph.D, Dr. Isnaeni, M.Sc yang telah membantu pada penelitian ini.

REFERENSI

- J. Cao *et al.*, "Effects of surface modification and SiO2 thickness on the optical and superparamagnetic properties of the water-soluble ZnS:Mn 2+ nanowires/Fe3O4 quantum dots/SiO2 heterostructures," *CrystEngComm*, vol. 15, no. 35, pp. 6971–6978, 2013, doi: 10.1039/c3ce40939b.
- [2] D. Kong *et al.*, "Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes," *J. Mater. Chem. A*, vol. 5, no. 19, pp. 9122–9131, 2017, doi: 10.1039/c7ta01172e.
- [3] Y. Qin, H. Li, J. Lu, C. Ma, X. Liu, and M. Meng, "Applied Surface

Science Fabrication of magnetic quantum dots modi fi ed Z-scheme Bi 2 O 4 / g-C 3 N 4 photocatalysts with superior hydroxyl radical productivity for the degradation of rhodamine B," *Appl. Surf. Sci.*, vol. 493, no. June, pp. 458–469, 2019, doi: 10.1016/j.apsusc.2019.06.290.

- [4] M. Rakibuddin and H. Kim, "Sol-gel derived Fe3O4 quantum dot decorated silica composites for effective removal of arsenic (III) from water," *Mater. Chem. Phys.*, vol. 240, no. August 2019, p. 122245, 2020, doi: 10.1016/j.matchemphys.2019.122245.
- [5] C. Wang *et al.*, "Hierarchical MOF-derived layered Fe3O4 QDs@C imbedded on graphene sheets as a high-performance anode for Lithium-ion storage," *Appl. Surf. Sci.*, vol. 509, no. November, p. 144882, 2020, doi: 10.1016/j.apsusc.2019.144882.
- [6] S. Badrigilan, B. Shaabani, N. Gharehaghaji, and A. Mesbahi, "Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: 'Three-in-one' theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy," *Photodiagnosis Photodyn. Ther.*, vol. 25, no. August 2018, pp. 504–514, 2019, doi: 10.1016/j.pdpdt.2018.10.021.
- [7] D. Che, X. Zhu, H. Wang, Y. Duan, Q. Zhang, and Y. Li, "Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging," *J. Colloid Interface Sci.*, vol. 463, pp. 1–7, 2016, doi: 10.1016/j.jcis.2015.10.039.
- [8] W. Guo et al., "Multifunctional Theranostic Agent of Cu2(OH)PO4 Quantum Dots for Photoacoustic Image-Guided Photothermal/Photodynamic Combination Cancer Therapy," ACS Appl. Mater. Interfaces, vol. 9, no. 11, pp. 9348–9358, 2017, doi: 10.1021/acsami.6b15703.
- [9] Y. Li et al., "Multifunctional Nanoplatform Based on Black Phosphorus Quantum Dots for Bioimaging and Photodynamic/Photothermal Synergistic Cancer Therapy," ACS Appl. Mater. Interfaces, vol. 9, no. 30, pp. 25098–25106, 2017, doi: 10.1021/acsami.7b05824.
- [10] S. Pandey et al., "Theranostic carbon dots 'clathrate-like' nanostructures for targeted photo-chemotherapy and bioimaging of cancer," J. Ind. Eng. Chem., vol. 56, pp. 62–73, 2017, doi: 10.1016/j.jiec.2017.06.008.
- [11] A. Fakhri, S. Tahami, and P. A. Nejad, "Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer," J. *Photochem. Photobiol. B Biol.*, vol. 175, no. August, pp. 83–88, 2017, doi: 10.1016/j.jphotobiol.2017.08.032.
- [12] J. Ban, K. Kim, H. Jung, and S. Choe, "Homogeneously distributed magnetite in the polystyrene spherical particles using the miniemulsion polymerization," *J. Ind. Eng. Chem.*, vol. 16, no. 6, pp. 1040–1049, 2010, doi: 10.1016/j.jiec.2010.09.001.
- [13] W. M. Daoush, "Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles for Potential Biomedical Applications," J. Nanomedicine Res., vol. 5, no. 3, pp. 12–16, 2017, doi: 10.15406/jnmr.2017.05.00118.
- [14] M. C. Mascolo, Y. Pei, and T. A. Ring, "Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large ph Window with Different Bases," *Materials (Basel).*, vol. 6, no. 12, pp. 5549–5567, 2013, doi: 10.3390/ma6125549.
- [15] F. C. Nalle, R. Wahid, I. O. Wulandari, and A. Sabarudin, "Synthesis and characterization of magnetic Fe 3 O 4 nanoparticles using oleic acid as stabilizing agent," *Rasayan J. Chem.*, vol. 12, no. 1, pp. 14–21, 2019, doi: 10.31788/RJC.2019.1214082.
- [16] B. I. Kharisov, H. V. R. Dias, O. V. Kharissova, A. Vázquez, Y. Peña, and I. Gómez, "Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-Aqueous solvents: Recent trends," *RSC Adv.*, vol. 4, no. 85, pp. 45354–45381, 2014, doi: 10.1039/c4ra06902a.
- [17] M. K. Shahid and Y. Choi, "Characterization and application of magnetite Particles, synthesized by reverse coprecipitation method in open air from mill scale," *J. Magn. Magn. Mater.*, vol. 495, no. August 2019, p. 165823, 2020, doi: 10.1016/j.jmmm.2019.165823.
- [18] P. C. Panta and C. P. Bergmann, "Obtention by Coprecipitation and Magnetic Characterization of Fe3O4 Nanoparticles Coated with Surfactants," *Nano Res. Appl.*, vol. 1, pp. 1–4, 2015.
- [19] G. A. El-Mahdy, A. M. Atta, and H. A. Al-Lohedan, "Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2- Methylpropane Sulfonate-co-Styrene)/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel," *Molecules*, vol. 19, no. 2, pp. 1713–

Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Padang (UNP) Jln. Prof. Hamka, Air Tawar, Padang, Sumatera Barat, Indonesia, 25131

http://ejournal.unp.ac.id/index.php/kimia

1731, 2014, doi: 10.3390/molecules19021713.

[20] L. Li, D. Li, and Z. Zhang, "Colloidal Stability of Magnetite Nanoparticles Coated by Oleic Acid and 3-(N,N-Dimethylmyristylammonio)propanesulfonate in Solvents," *Front. Mater.*, vol. 9, no. June, pp. 1–10, 2022, doi: 10.3389/fmats.2022.893072.