The Potential of Hot Water Sapan Sungai Aro Thermophilic Bacteria Consortium in Producing Bioethanol

Inayatul Fatia, Irdawati Irdawati, Linda Advinda, Azwir Anhar

Abstract


Biofuel is a potentially renewable alternative fuel in Indonesia. Bioethanol is one example of the most commonly used biofuel. Microorganisms of thermophilic bacteria are known to contribute to the production of bioethanol. Thermophilic bacteria are efficient against high temperature conditions so as to minimize contamination. Production of bioethanol can also use joint culture (consortium). Bioethanol production using a microbial biculture consortium is known to significantly increase the level of bioethanol production. The purpose of this study was to determine the compatibility and to determine the optimum potential of the thermophilic bacterial biculture consortium of Sapan Sungai Aro hot water for bioethanol production. This research is a type of descriptive research. To test the cooperation between consortium isolates of thermophilic bacteria producing bioethanol, a compatibility test was carried out using the disk diffusion method. Then the consortium isolates were fermented in liquid TMM (Thermophilic Minimum Media) medium, the bioethanol content was measured after distillation using a pycnometer. The results of the bacterial compatibility test showed that there was one pair of isolates that were not compatible, namely SSA 8 & SSA 14 due to the presence of a clear zone. On research results. The production of bioethanol by a consortium of thermophilic bacteria gives more optimal results compared to a single isolate. The best thermophilic bacterial biculture consortium from the Sapan Sungai Aro hot spring in producing biofuels is SSA 14 & SSA 16 which is 3.009%. 


References


Ali, M., et al. 2019. The Use Of Crop Residues for Biofuel Production. Biomass, Biopolymer-Based Materials, and Bioenergy, 369–395.

Asri, A. C., & Zulaika, E. (2016). Sinergisme antar isolat Azotobacter yang dikonsorsiumkan. Jurnal sains dan seni ITS, 5(2). DOI: 10.12962/j23373520.v5i2.20693

Bader, J., Mast-Gerlach, E., Popoviæ, M. K., Bajpai, R., and Stahl, U. (2010). Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol 109, 371–387. doi: 10.1111/j.1365-2672.2009.04659.x

Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: a new frontier in synthetic biology. Trends in biotechnology, 26(9), 483-489.

Du, Y., Zou, W., Zhang, K., Ye, G., & Yang, J. (2020). Advances and Applications of Clostridium Co-Culture Systems in Biotechnology. Frontiers in Microbiology, 11, 560223. DOI: 10.3389/fmicb.2020.560223

Fitriasari, P. D., Amalia, N., & Farkhiyah, S. (2020). Isolasi dan uji kompatibilitas bakteri hidrolitik dari tanah tempat pemrosesan akhir Talangagung, Kabupaten Malang. Berita Biologi, 19(1), 151-156. pp. 151-156. ISSN 2337-8751

Hibbing, M.E., Fuqua, C., Parsek, M.R. and Peterson, S.B., (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Review Microbiology, 8(1), 15–25. DOI: 10.1038/nrmicro2259

Irabor, Afona dan Mmbaga, M. T. (2017). Evaluation of Selected Bacterial Endophytes for Biocontrol Potential against Phytophthora Blight of Bell Pepper (Capsicum annuum L.). Journal of Plant Pathology & Microbiology, 8(10), 2-7. DOI: 10.4172/2157-7471.1000424

Irdawati, I., Syamsuardi, S., Agustien, A., & Rilda, Y. (2018). Screening of Thermophilic Bacteria Produce Xylanase from Sapan Sungai Aro Hot Spring South Solok. In IOP Conference Series: Materials Science and Engineering, 335 (1), 1-2. DOI:10.1088/1757-899X/335/1/012021

Irdawati, Matondang, I., Advinda, L. ., Anhar, A., & Yusrizal, Y. (2023). Compatibility Test Consorcium of Thermophilic Bacteria Producing Xylanase Enzym from The Hot Water of Mudiak Sapan (MS18, MSS15, MSS11, MS16). Jurnal Biologi Tropis, 23(2), 198–202. DOI: 10.29303/jbt.v23i2.4761.

Jovanita, L., & Advinda, L. (2022). Compatibility Test of Fluorescent Pseudomonad Isolated from Plant Rhizosphere. Jurnal Serambi Biologi, 7(1), 65-69. e-ISSN: 2722-2829

Khanna, M., Crago, C. L., and Black, M. 2011. Can Biofuels be a Solution to Climate Change? The Implications of Land use Change-Related Emissions for Policy. Interface Focus, 1(2).

Meskal, M.M., 2018. Biomass as a Source of Renewable Energy and its Impact on The Air Quality. Presentation at MENAREC, 4.

Riyanti, E. I. 2011. Beberapa Gen pada Bakteri Yang Bertanggung Jawab Terhadap Produksi Bioetanol. Jurnal Litbang Pertanian, 30(2).

Safari, W. F., & Syafaat, M. 2022. Effect of Pretreatment and Composition of Trichoderma Viride and Zymomonas Mobilis Consortium on Bioethanol Production from Leaf Litter. Indonesian Journal of Biotechnology and Biodiversity, 6(2).

Sarsan, S., Pandiyan, A., Rodhe, A. V., & Jagavati, S. (2021). Synergistic Interactions Among Microbial Communities. Microbes in Microbial Communities: Ecological and Applied Perspectives: Springer 1-37. DOI: 10.1007/978-981-16-5617-0_1

Scully, S. M., and Johann, O. 2015. Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. Energies. 8(1).

Septiani, V., Choirunnisa, A., & Syam, A. K. 2017. Uji Aktivitas Antimikroba Ekstrak Etanol Daun Karuk (Piper sarmentosum roxb.) terhadap Streptococcus mutans dan Candida albicans. Kartika: Jurnal Ilmiah Farmasi, 5(1).

Serevina, V., Pambudi, R.D. and Nugroho, D.A., 2021. The Usaha Briket Biomassa Sebagai Sarana Pengurangan Bahan Bakar Fosil Dan Mengurangi Limbah. Jurnal Pengabdian Masyarakat Sains dan Aplikasinya (JPMSA), 1(1).

Strobel, G.A., 2015. Bioprospecting—fuels from fungi. Biotechnology letters, 37.

Utomo, T.P., 2015. Kajian Potensi Produksi Biofuel Di Kabupaten Tulang Bawang, Lampung. Inovasi Pembangunan: Jurnal Kelitbangan, 3(1).

Vaizi. 2022. Potensi Bakteri Termofilik dalam Menghasilkan Bioetanol pada Variasi Ph Inkubasi. Skripsi. Padang: FMIPA UNP.

Vinotha, T., & Umamaheswari, N. 2019. Bioethanol Production Using Bacterial Consortia from Waste Cellulosic Waste. Think India Journal, 22(10).

Vu, V., Farkas, C., Riyad, O., Bujna, E., Kilin, A., Sipiczki, G., & Nguyen, Q. D. 2022. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Bioresource Technology, 343, 126092.

Wu, G., Yan, Q., Jones, J.A., Tang, Y.J., Fong, S.S. and Koffas, M.A., 2016. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends in biotechnology, 34(8).

Zaldivar GJ,Vicille and Savchenko.1998.Thermozymes: Bioetechnology and Structur function. Journal of Extremophiles 2, 179-183

Zhou, K., Qiao, K., Edgar, S. and Stephanopoulos, G., 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature biotechnology, 33(4).




DOI: https://doi.org/10.24036/bsc.v7i2.123265

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Inayatul Fatia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Bioscience is Indexed By: