Potensi Bakteri Metanotrof sebagai Pereduksi Emisi Metan pada Lahan Pertanian
Abstract
Konsentrasi Gas Rumah Kaca (GRK) meningkat seiring dengan aktivitas manusia dan menyebabkan peningkatan pemanasan global, salah satunya berasal dar sektor pertanian. Masih tingginya produksi emisi GRK pada sektor pertanian membutuhkan monitoring dan pengawasan secara berkala, sehingga dapat dipantau dan ditekan kuantitasnya. Untuk mengukur emisi GRK diperlukan inovasi dengan salah satu pengaplikasian bakteri metanotrof yang dapat menekan emisi di lahan pertanian. Tujuan dari penelitian ini adalah untuk mengetahui potensi bakteri metanotrof yang diaplikasikan pada lahan pertanian dalam mengurangi emisi metan. Perlakuan dalam penelitian terdiri dari 4 perlakuan diantaranya Sungkup 1 (Isolat bakteri MFb), Sungkup 2 (Isolat bakteri MFc), Sungkup 3 (Isolat bakteri MFd), dan Sungkup 4 (Isolat bakteri MFe). Pengambilan contoh gas dilakukan dengan metode sungkup tertutup (close chamber technique). Emisi metan (CH4) dianalisis secara langsung di lapangan dengan menggunakan alat digital berupa Alat Pintar Digital deteksi Kebocoran Gas Metana dan Propana AZ-7291 untuk mengukur CH4. Hasil penelitian menunjukkan bahwa terdapat pengaruh aplikasi bakteri metanotrof terhadap laju penurunan emisi gas metan. Dari semua perlakuan isolate bakteri metanotrof yang diberikan, perlakuan bakteri metanotrof dengan kode MFe mampu menurunkan rata-rata emisi CH4 sebesar 305,449 mol/jam dan dianggap bahwa isolate tersebut adalah isolate yang paling baik diantara semua perlakuan.
Greenhouse Gas (GHG) concentrations increase along with human activities and cause an increase in global warming, one of which comes from the agricultural sector. The high production of GHG emissions in the agricultural sector requires regular monitoring and supervision, so that the quantity can be monitored and suppressed. To measure GHG emissions, innovation is needed, one of which is the application of methanotrophic bacteria which can reduce emissions on agricultural land. The purpose of this study was to determine the potential of methanotrophic bacteria applied to agricultural land in reducing methane emissions. The treatment in this study consisted of 4 treatments including Chamber 1 (bacterial MFb isolate), Chamber 2 (bacterial MFc isolate), Chamber 3 (bacterial MFd isolate), and Chamber 4 (bacterial MFe isolate). Gas sampling was carried out using the closed chamber technique. Methane (CH4) emissions are analyzed directly in the field using a digital device in the form of a Methane and Propane AZ-7291 Digital Smart Leak Detection Tool to measure CH4. The results showed that there was an effect of the application of methanotrophic bacteria on the rate of reduction of methane gas emissions. Of all the isolates of methanotrophic bacteria given, the treatment of methanotrophic bacteria with the code MFe was able to reduce the average CH4 emission by 305.449 mol/hour and it was considered that the isolate was the best isolate among all the treatments.
Keywords: Methanotrophic bacteria, GHG, methane, agricultural land
Keywords
Full Text:
PDF (Bahasa Indonesia) (Bahasa Indonesia)References
Abichou, T., Kormi, T., Yuan, L., Johnson, T., dan Francisco, E. 2015. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates. Waste Management Journal 36: 230-240.
Arif, C., Setiawan, B. I., Widodo, S., Rudiyanto, -, Hasanah, N. A. I., & Mizoguchi, M. 2015. Pengembangan Model Jaringan Saraf Tiruan untuk Menduga Emisi Gas Rumah Kaca dari Lahan Sawah dengan berbagai Rejim Air. Jurnal Irigasi, 10(1), 1.
Bodelier,P.L., Roslev, P., Henckel, T., Frenzel, P., 2000. Stimulation by ammonium based fertilizers of methane oxidation in soil around roots. Nature 403, 421–424.
Boon, P.I. and A. Mitchell. 1995. Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis, FEMS Microbiology Ecology, 18(3): 175–190.
Chambers, L.G., S.E. Davis, T. Troxler, J.N. Boyer, A. Downey- Wall and L.J. Scinto. 2014. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil, Hydrobiologia, 726(1): 195–211.
Datta, A., J.B. Yeluripati, D.R. Nayak, K.R. Mahata, S.C. Santra and T.K. Adhya. 2013. Seasonal variation of methane flux from coastal saline rice field with the application ofdifferent organic manures, Atmospheric Environment, 66: 114–122.
Dean, J.F., J.J. Middelburg, T. Röckmann, R. Aerts, L.G. Blauw, M. Egger, M.S.M. Jetten, A.E.E. de Jong, O.H. Meisel, O. Rasigraf, C.P. Slomp, M.H. in’t Zandt and A.J. Dolman. 2018. Methane Feedbacks to the Global Climate System in a Warmer World, Reviews of Geophysics, 56(1): 207–250.
Graham DW, Korich DG, Leblanc RP, Sinclair NA, Arnold RG. 1992. Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiology 58:2231-2236.
Honson, R. S. & Honson, T. E. (1996). Methanotrophic Bacteria. Microbiological Reviews, 60 (2), 439-471.
Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J.F. Lamarque, R.L. Langenfelds, C. Le Quéré, V. Naik, S. O’doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. Van Der Werf, A. Voulgarakis, M. Van Weele, R.F. Weiss, J.E. Williams and G. Zeng. 2013. Three decades of global methane sources and sinks, Nature Geoscience, 6(10): 813–823.
Lofton, D.D., S.C. Whalen, A.E. Hershey. 2014. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes, Hydrobiologia, 721(1): 209–222.
Martins, C.S.C., C.A. Macdonald, I.C. Anderson and B.K. Singh. 2016. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems, Soil Biology and Biochemistry. 100: 21–32.
Milich, L., 1999. The role of methane in global warming: where might mitigation strategies be focused? Global Environmental Change, 9(3): 179–201.
Nonci., Maimuna, Baharuddin, Burhanuddin Rasyid, Pirman. 2015. Seleksi Bakteri Metanotrof (Pereduksi Gas emetan di Lahan Sawah ) berdasarkan Aktivitas Enzim Methan Mo Emisi Mooksinase. 2005. Jurnal Lingkungan Hidup, 13 (2): 86-91. ISSN 1829-8907.
Poffenbarger, H.J., B.A. Needelman, J.P. Megonigal. 2011. Salinity influence on methane emissions from tidal marshes, Wetlands, 31: 831–842.
Schaefer, H., S.E.M. Fletcher, C. Veidt, K.R. Lassey, G.W. Brailsford, T.M. Bromley, E.J. Dlugokencky, S.E. Michel, J.B. Miller, I. Levin, D.C. Lowe, R.J. Martin, B.H. Vaughn and J.W.C. White. 2016. A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4, Science, 352(6281): 80–84.
Septeyadi, Muhammad Dimas. 2019. Emisi Gas Metana (CH4) Sedimen Keramba Situ Gintung dengan Penambahan Subtrat Kompetitif dan Subtrat Non- Kkompetitif. [Skripsi]. Universitas Islam Negeri Syarif Hidayatullah : Jakarta.
Serranio-Silva, N., Sarria-Guzman, Y., Dendooven, L., & Luna-Guido, M. 2014. Methanogenesis and Methanotrophy in Soil: A Review. Soil Science Society of China, 24(3): 291-307.
Sumani D.P., Ariyanto J. Syamsiyah, dan Mujiyo. 2009. Pengaruh Imbangan Pupuk Organik Dan Anorganik Terhadap Emisi Gas Metana (CH4) Di Lahan Sawah Palur, Sukoharjo, Jawa Tengah. Surakarta: Fakultas Pertanian, Universitas Negeri Surakarta.
Vivanco, D. V. 2009. Regulation and Function oof Root Exudates. Plant, Cell and Environmental, 666-681.
Theowidavitya, Brian., Mafrikhul Mutaqqin., Miftahudin dan Aris Tjahjoleksono. 2019. Analisis Metabolomik Pada Interaksi Padi dan Bakteri. Jurnal Sumberdaya Hayati, 5(1):18-24.
Ulumuddin, Y.I. 2019. Metana: Emisi Gas Rumah Kaca dari Ekosistem Karbon Biru, Mangrove. Jurnal Ilmu Lingkungan, 17(2): 359-372.
Zhang, Y. and W. Ding. 2011. Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal salt marsh, Aquatic Botany, 95(4): 262–267.
DOI: https://doi.org/10.24036/0202371120929-0-00
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 febrianti rosalina, sukmawati sukmawati, Ponisri Ponisri, Anif Farida, Budi Satria, Ayu Diah Syafaati, Nuryanto Nuryanto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Bioscience is Indexed By: