Prospecting the roles of Trichoderma in sustainable crop production: biotechnological developments and future prospects

Rizky Riscahya Pratama Syamsuri, Dwi Astuti Aprilia, Atasya Yasmine Fakhira, Almira Salma Nabilah, Sulistya Ika Akbari, Nia Rossiana, Febri Doni

Abstract


The filamentous fungal genus Trichoderma are reported to have a significant impact on the growth and development of various crops. Trichoderma species which are residing in the rhizosphere of crops, and as fungal symbionts living within plant tissues have multiple roles in enhancing crops’ agronomic traits, fitness, growth and yield, and in modulating their tolerance towards biotic and abiotic stresses. This article discusses on the potential and impact of Trichoderma in improving the development and production of crops, as well the mechanism of Trichoderma in improving the development and production of crops. This article also highlights the ability of Trichoderma for improving crops’ tolerance to abiotic and biotic stresses. Prospectively, the use of Trichoderma inoculants offers some new, cost-effective, and more eco-friendly practices for increasing crops’ production.

Keywords


Trichoderma, plant growth promotion fungi, crop resistance, biocontrol, sustainable agriculture

References


Abo‐Elyousr, K. A., Abdel‐Hafez, S. I., & Abdel‐Rahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162(9), 567-574.

Abdullah, N. S., Doni, F., Mispan, M. S., Saiman, M. Z., Yusuf, Y. M., Oke, M. A., & Suhaimi, N. S. M. (2021). Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy, 11(12), 2559.

Akbar, M., El-Sabrout, A. M., Shokralla, S., Mahmoud, E. A., Elansary, H. O., Akbar, et al., (2022). Preservation and recovery of metal-tolerant fungi from industrial soil and their application to improve germination and growth of wheat. Sustainability, 14(9), 5531.

Akladious, S. A. & Salwa, M. A. (2012). Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. African Journal of Biotechnology, 11(35), 8672-8683.

Al-Ani, L. K. T. (2018). Trichoderma: Beneficial role in sustainable agriculture by plant disease management. In Plant Microbiome: Stress Response. Egamberdieva, D., Ahmad, P., Eds. Springer, 105-126.

Al-Rajhi, A. M. (2013). Impact of Biofertilizer Trichoderma harzianum Rifai and the biomarker changes in Eruca sativa L. plant grown in metal-polluted soils. World Applied Sciences Journal, 22(2), 171-180.

Al-Surhanee, A. A. (2022). Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi Journal of Biological Sciences, 29(4), 2933-2941.

Anam, G. B., Reddy, M. S., & Ahn, Y. H. (2019). Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Science of the Total Environment, 662, 462-469.

Bernal-Vicente, A., Pascual, J. A., Tittarelli, F., Hernández, J. A., & Diaz-Vivancos, P. (2014). Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants. Journal of the Science of Food and Agriculture, 95(11), 2208-2214.

Bitas, V., Kim, H.S., Bennett, J.W., & Kang, S. (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant–Microbe Interactions, 26, 835-843.

Cai, Feng., Yu, Guanghui., Wang, Ping., Wei, Zhong., Fu, Lin., Shen, Qirong., & Chen, Wei. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry, 73, 106-113.

Cetinel, A.H.S., Gokce, A., Erdik, E., Cetinel, B., & Cetinkaya, N. (2021). The Effect of Trichoderma citrinoviride treatment under salinity combined to Rhizoctonia solani infection in strawberry (Fragaria x ananassa Duch.). Agronomy, 11(8), 1589.

Contreras-Cornejo, H. A., Macias-Rodriguez, L., Beltran-Pena, E., Herrera-Estrella, A., & Lopez-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal-and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling & Behavior, 6(10), 1554-1563.

Cornejo-Ríos, K., Osorno-Suárez, M. D. P, Hernández-León, S., Reyes-Santamaría, M. I., Juárez-Díaz, J. A., Pérez-España, V. H., Peláez-Acero, A., Madariaga-Navarrete, A., & Saucedo-García, M. (2021). Impact of Trichoderma asperellum on chilling and drought stress in tomato (Solanum lycopersicum). Horticulturae, 7(10), 385.

De Padua, J. C., & dela Cruz, T. E. E. (2021). Isolation and characterization of nickel-tolerant Trichoderma strains from marine and terrestrial environments. Journal of Fungi, 7(8), 591.

Doni, F., Zain, C. R. C. M., Isahak, A., Fathurrahman, F., Sulaiman, N., Uphoff, N., & Yusoff, W. M. W. (2017). Relationships observed between Trichoderma inoculation and characteristics of rice grown under system of rice itensification (SRI) vs. conventional methods of cultivation. Symbiosis, 72(1), 45-59.

Doni, F., Che, R.C.M.Z., Anizan, I., Fathurrahman, F., Azwir, A., Wan, N. W. M., & Norman, U. (2018). A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Organic Agriculture, 8, 207-223.

Doni, F., Suhaimi, N. S. M., Mispan, M. S., Fathurrahman, F., Marzuki, B. M., Kusmoro, J., & Uphoff, N. (2022). Microbial contributions for rice production: from conventional crop management to the use of ‘omics’ technologies. International Journal of Molecular Sciences, 23(2), 737.

El-Kazzaz, M. K., Ghoneim, K. E., Agha, M. K. M., Helmy, A., Behiry, S. I., Abdelkhalek, A., & Elsharkawy, M. M. (2022). Suppression of pepper root rot and wilt diseases caused by Rhizoctonia solani and Fusarium oxysporum. Life, 12(4), 587.

Enders, T.A. & Strader, L.C. (2015). Auxin activity: past, present, and future. American Journal of Botany, 102, 180-196.

FAO. (2017). The future of food and agriculture – Trends and challenges. Rome.

Fincheira, P., & Quiroz, A. (2018). Microbial volatiles as plant growth inducers. Microbiological Research, 208, 63-75.

Finkel, O.M., Castrillo, G., Herrera Paredes, S., Salas González, I., & Dangl, J.L. (2017). Understanding and exploiting plant beneficial microbes. Plant Biology, 38, 155-163.

Ghorbanpour, A., Salimi, A., Ghanbary, M. A. T., Pirdashti, H., & Dehestani, A. (2018). The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Scientia Horticulturae, 230, 134-141.

Grillo, O., & Venora, G. (2011). Biodiversity of Trichoderma in Neotropics. INTECH Open, 303. doi: 10.5772/23378.

Halifu, S., Deng, X., Song, X., Song, R., & Liang, X. (2020). Inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani. Plants, 9 (7), 912.

Harman, G.E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190-194.

Harman, G.E., C.R. Howell, A. Vitrebo, I. Chet, and M. Lorito. (2004). Trichoderma species opportunistic, arivulent plant symbionts. Nature Reviews Microbiology, 2, 43-56.

Harman, G. E., Doni, F., Khadka, R. B., & Uphoff, N. (2021). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, 130 (2), 529-546.

Harman, G.E. (2000). Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease., 84 (4), 377-393.

Harman, G.E., & Bjorkman, T. (2005). Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman, G.E., Kubicek, C.P. (Eds.), Trichoderma and Gliocladium, vol. 2. Taylor & Francis Ltd, London, 229-265.

Harman, G. E. (2011). Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytologist, 189(3), 647-649.

Hassan, H. S., Mohamed, A. A., Feleafel, M. N., Salem, M. Z., Ali, H. M., Akrami, M., & Abd-Elkader, D. Y. (2021). Natural plant extracts and microbial antagonists to control fungal pathogens and improve the productivity of zucchini (Cucurbita pepo L.) in vitro and in greenhouse. Horticulturae, 7(11), 470.

Hyakumachi, M., & Kubota, M. (2003). Fungi as plant growth promoter and disease suppressor. Fungal Biotechnology in Agricultural Food and Environmental Application, 21, 101-110.

Ilangumaran, G., & Smith, D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers in Plant Science, 8, 1768.

Inayati, A., Liliek, S., Luqman, Q.A., & Eriyanto, Y. (2020). Trichoderma virens-Tv4 enhances growth promoter and plant defenserelated enzymes of mungbean (Vigna radiata) against soil-borne pathogen Rhizoctonia solani. Biodiversitas, 21(6), 2410-2419.

Ji, Shida., Liu, Zhihua., Liu, Bin., Wang, Yucheng., & Wang, Jinjie. (2020). The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Scientia Horticulturae, 262, 2-8.

Kang, S., Lumactud, R., Li, N., Bell, T. H., Kim, H. S., Park, S. Y., & Lee, Y. H. (2021). Harnessing chemical ecology for environment-friendly crop protection. Phytopathology, 111(10), 1697-1710.

Khan, I. H., & Javaid, A. (2020). In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24(4), 730-736.

Khan, R. A. A., Najeeb, S., Mao, Z., Ling, J., Yang, Y., Li, Y., & Xie, B. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode. Microorganisms, 8(3), 401.

Khomari, S., Golshan-Doust, S., Seyed-Sharifi, R., & Davari, M. (2017). Improvement of soybean seedling growth under salinity stress by biopriming of high-vigour seeds with salt-tolerant isolate of Trichoderma harzianum. New Zealand Journal of Crop and Horticultural Science, 46, 117-132.

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in plant science, 845.

Kottb, M., Gigolashvili, T., Grobkinsky, D.K., & Piechulla B. (2015). Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Frontiers in Microbiology, 6, 995.

Kubicek, C. P., Mach, R. L., Peterbauer, C. K., & Lorito, M. (2001). Trichoderma: from genes to biocontrol. Journal of Plant Pathology, 11-23.

Kumari, P and Kumar, P. (2020). Trichoderma fungus in mitigation of rhizosphere arsenic: with special reference to biochemical changes. Plant Archives, 20(2), 3512-3517.

Li, R. X., Cai, F., Pang, G., Shen, Q. R., Li, R., & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PloS One, 10, e0130081.

Lombardi, N., Caira, S., Troise, A.D., Scaloni, A., Vitaglione, P., Vinale, F., Marra, R., Salzano, A.M., Lorito, M, & Woo S.L. (2020). Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Frontiers in Microbiology, 11, 1364.

Lombardi, N., Salzano, A. M., Troise, A. D., Scaloni, A., Vitaglione, P., Vinale, F., & Woo, S. L. (2020). Effect of Trichoderma bioactive metabolite treatments on the production, quality, and protein profile of strawberry fruits. Journal of Agricultural and Food Chemistry, 68 (27), 7246-7258.

Mahato, S., Susmita, B., & Jiban, S. (2018). Effect of Trichoderma Viride as biofertilizer on growth and yield of wheat. Malaysian Journal of Sustainable Agriculture , 2, 1-5.

Mahmoud, G. A. E., Abdel-Sater, M. A., Al-Amery, E., & Hussein, N. A. (2021). Controlling Alternaria cerealis MT808477 tomato phytopathogen by Trichoderma harzianum and tracking the plant physiological changes. Plants, 10(9), 1846.

Manoharachary, C., Harikesh, B.S., & Ajit, V. (2020). Trichoderma: Agricultural Applications and Beyond. Switzerland: Springer Nature.

Martinez-Medina, A., Roldan, A., & Pascual, J.A. (2011). Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium Wilt biocontrol. Applied Soil Ecology, 47(2), 98-105.

Meena, R.S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., & Pathan, S.I. (2020). Impact of agrochemicals on soil microbiota and management: a review. Land, 9 (2), 34.

Mukhopadhyay, R., & Kumar, D. (2020). Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30(1), 1-8.

Mulatu, A., Megersa, N., Abena, T., Kanagarajan, S., Liu, Q., Tenkegna, T. A., & Vetukuri, R. R. (2022). Biodiversity of the genus Trichoderma in the rhizosphere of coffee (Coffea arabica) plants in Ethiopia and their potential use in biocontrol of coffee wilt disease. Crops, 2(2), 120-141.

Novianti, D., Basyah, B., & Kesumawati, E. (2021). The effect of Trichoderma harzianum dose and shallot population (Allium cepa L.) on chili production (Capsicum annuum L.) by intercropping system. IOP Confernce Series: Earth and Environmental Science, 922.

Pascale, A., Proietti, S., Pantelides, I. S., & Stringlis, I. A. (2020). Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Frontiers in Plant Science, 10, 1741.

Poveda, J. (2020). Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy, 10(1), 118.

Racić, G., Vukelić, I., Prokić, L., Ćurčić, N., Zorić, M., Jovanović, L., & Panković, D. (2018). The influence of Trichoderma brevicompactum treatment and drought on physiological parameters, abscisic acid content and signalling pathway marker gene expression in leaves and roots of tomato. Annals of Applied Biology, 173, 213-221.

Rafael da Silva, L., Valadares-Inglis, M.C., Peixoto, G.H.S., de Luccas, B.E.G, Muniz, P.H.P.C., Martins, D.M., & de Mello, S.C.M. (2020). Volatile organic compounds emitted by Trichoderma azevedoi promote the growth of lettuce plants and delay the symptoms of white mold. Biological Control, 152, 104447.

Rahman, A., M. F. Begum, M. Rahman, M. A. Bari, G. N. M. Ilias, 152 (2021): 104447. & M. F. Alam. (2011). Isolation and identification of Trichoderma Species from different habitats and their use for bioconversion of solid saste. Turkish Journal of Biology, 35, 183-194.

Rebolledo-Prudencio, O. G., Dautt-Castro, M., Estrada-Rivera, M., del Carmen González-López, M., Jijón-Moreno, S., & Casas-Flores, S. (2020). Trichoderma in the rhizosphere: an approach toward a long and successful symbiosis with plants. In New and Future Developments in Microbial Biotechnology and Bioengineering, 3-38.

Rouphael, Y., Cardarelli, M., Bonini, P., & Colla, G. (2017). Synergistic action of a microbialbased biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Frontiers in Plant Science, 8, 131.

Rubio, M. B., Hermosa, R., Vicente, R., Gómez-Acosta, R., Morcuende, R., Monte, E., & Bettiol, W. (2017). The Combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plant Science, 8, 294.

Sani, M. N. H., Hasan, M., Uddain, J., & Subramaniam, S. (2020). Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced NPK fertilization. Annals of Agricultural Sciences, 65(1), 107-115.

Schuster A, Schmoll M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87, 787-799.

Shah, S., Nasreen, S., & Sheikh, P.A. (2012). Cultural and morphological characterization of Trichoderma sp. associated with green mold disease of Pleutorus sp. in Kashmir. Research Journal of Microbiology., 7(2),139-144.

Shoresh, M., F. Mastouri & G. E. Harman. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43.

Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2014). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of Applied Biology, 166(2), 171-182.

Silletti, S., Di Stasio, E., Van Oosten, M. J., Ventorino, V., Pepe, O., Napolitano, M., Marra, R., Woo, S. L., Cirillo, V., & Maggio, A. (2021). Biostimulant activity of Azotobacter chroococcum and Trichoderma harzianum in durum wheat under water and nitrogen deficiency. Agronomy, 11(2), 380.

Siddiquee, S. (2017). Practical handbook of the biology and molecular diversity of Trichoderma species from tropical regions (Vol. 431). Cham: Springer International Publishing.

Singh, J., Rajput, R. S., Singh, P., Ray, S., Vaishnav, A., Singh, S. M., & Singh, H. B. (2021). Screening, isolation and characterization of heat stress tolerant Trichoderma isolates: sustainable alternative to climate change. Plant Archives, 21(1), 1717-1734.

Sofo, A., Scopa, A., Manfra, M., De Nisco, M., Tenore, G. et al. (2011). Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regulation, 65, 421-425.

Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology, 3(4), a001438.

Sparta, A., & Emilda, D. (2020). Growth evaluation of banana cv. barangan as the effect of Trichoderma sp. and covering types during acclimatization process. Journal of Sustainable Agriculture, 35(2), 268-277.

Stracquadanio, C., Quiles, J. M., Meca, G., & Cacciola, S. O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi, 6(4), 263.

Tanimoto, E. (2005). Regulation of root growth by plant hormones: roles for auxin and gibberellin. Critical Reviews in Plant Sciences., 24 (4), 249-265.

Tchameni, S.N., Sameza, M.L., O’donovan, A., Fokom, R., Ngonkeu, E.L.M, Wakam Nana, L. & Nwaga, D. (2017). Antagonism of Trichoderma asperellum against Phytophthora megakarya and its potential to promote cacao growth and induce biochemical defence. Mycology, 8(2), 84-92.

Tegene, S., Dejene, M., Terefe, H., Tegegn, G., Tena, E., & Ayalew, A. (2021). Evaluation of native Trichoderma isolates for the management of sugarcane smut (Ustilago scitaminea) in sugar plantations of Ethiopia. Cogent Food & Agriculture, 7(1), 1872853.

Todorovic, B. & Glick, B.R. (2008). The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta, 229, 193–205.

Tripathi, R., Keswani, C., & Tewari, R. (2021). Trichoderma koningii enhances tolerance against thermal stress by regulating ROS metabolism in tomato (Solanum lycopersicum L.) plants. Journal of Plant Interactions, 16(1), 116-125.

Troiano, D., V. Orsat., & M.J. Dumont. (2020). Status of filamentous fungi in integrated biorefineries. Renewable and Sustainable Energy Reviews, 117, 109472

Trovato, M., Mattioli, R., & Costantino, P. (2008). Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei. Scienze Fisiche e Naturali, 19(4), 325-346.

Velasco, P., Rodriguez, V.M., Soengas, P., & Poveda J. (2021). Trichoderma hamatum increases productivity, glucosinolate content and antioxidant potential of different leafy brassica vegetables. Plants, 10, 2449.

Viterbo, A., Landau, U., Kim, S., Chernin, L. & Chet, I. (2010). Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiology Letter, 305, 42-48.

Xu, H., Yan, L., Zhang, M., Chang, X., Zhu, D., Wei, D., & Yang, W. (2022). Changes in the density and composition of rhizosphere pathogenic fusarium and beneficial Trichoderma contributing to reduced root rot of intercropped soybean. Pathogens, 11(4), 478.

Yadav, M., Dubey, M. K., & Upadhyay, R. S. (2021). Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. Journal of Fungi, 7(4), 307.

Yedidia, I., Srivastva, A.K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil, 235, 235-242.

Yones, A. M., & Kayim, M. (2021). Molecular Characterization of Trichoderma spp. with Biocontrol Ability Against Faba Bean Chocolate Spot (Botrytis cinerea Pers. ex Fr.). Plant Cell Biotechnology and Molecular Biology, 22, 52-63.

You, J., Li, G., Li, C., Zhu, L., Yang, H., Song, R., & Gu, W. (2022). Biological control and plant growth promotion by volatile organic compounds of Trichoderma koningiopsis T-51. Journal of Fungi, 8(2), 131.

Yuan, H., Zhu, Z., Liu, S., Ge, T., Jing, H., Li, B., Liu, Q., Lynn, T.M., Wu, J., & Kuzyakov, Y., (2016). Microbial utilization of rice root exudates: 13 C labeling and PLFA composition. Biology and Fertility of Soils, 52, 615-627.

Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F., Yang, T., Ma, K., & Zhang, Y. (2019). Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 170, 436–445.

Zhu, N., Zhou, J. J., Zhang, S. W., & Xu, B. L. (2022). Mechanisms of Trichoderma longibrachiatum T6 fermentation against valsa mali through inhibiting its growth and reproduction, pathogenicity and gene expression. Journal of Fungi, 8(2), 113.

Zin, N.A., & Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178.




DOI: https://doi.org/10.24036/0202262119346-0-00

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rizky Riscahya Pratama Syamsuri, Dwi Astuti Aprilia, Atasya Yasmine Fakhira, Almira Salma Nabilah, Sulistya Ika Akbari, Nia Rossiana, Febri Doni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Bioscience is Indexed By: