ASSOCIATION RULE DALAM MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FP-GROWTH

Delila Melati(1), Titi Sri Wahyuni(2),
(1) Universitas Negeri Padang  Indonesia
(2) Universitas Negeri Padang  Indonesia

Corresponding Author



Full Text:    Language : id

Abstract


Sales transaction data at Bigmart stored in a database will be able to become new knowledge if processed using the data mining process. In addition, inventory is also a problem that is being faced by Bigmart. Data mining is able to analyze data into information in the form of transaction patterns that are useful in increasing revenue, one of which is Cross-Selling products. Association rule is one of the data mining methods included in the Market Basket Analysis method. The algorithm used is the FP-Growth algorithm because it has the virtue of shorter time processing data. The pattern obtained is determined by the value of support (support) and the value of confidence (confidence). To find the association rules the FP-Growth algorithm is used. To get more accurate association rules, use the Weka 8.3 tool. There are 11 association rules obtained using the Weka 8.3 tool which is classified as a Stong Rule that meets the Minimum support value of 10% and Minimum confidence 80%.

 

Keywords: Database, Cross-selling, Market Basket Analysis, Association Rule, FP-Growth


References


Ghozali, M. I., & Sugiharto, W. H. (2017). ANALISA POLA BELANJA MENGGUNAKAN ALGORITMA FP GROWTH, SELF ORGANIZING MAP (SOM) DAN K MEDOIDS. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 8(1), 317-326.

Mayla Surveyandini,. 2016. Cross Selling & Cross Buying (Pemahamannya dalam Dunia Pemasaran). Yogyakarta: Depublish.

Johan Oscar Ong. 2013. Implementasi Algoritma K-Means Clustering untuk Menentukan Strategi Marketing President University.(Vol. 12, Nomor 1). Hlm. 13

Orisky Sitra Arifah Destiyati & Eko Aribowo. 2015. Anaslisa Perbandingan Algoritma Apriori dan Algoritma Hash Based pada Market Basket Analysis di Apotek UAD. (Vol. 3 Nomor 1). Hlm. 1

Faid, M., Jasri, M., & Rahmawati, T. (2019). Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi. Teknika, 8(1), 11-16.

Amril Mutoi Siregar & Adam Puspabhuana. 2017. Data Mining Pengolahan data menjadi informasi dengan Rapid Miner. Surakarta: Kekata Publisher


Article Metrics

 Abstract Views : 20 times
 PDF Downloaded : 4 times

Refbacks

  • There are currently no refbacks.